pág. 12846
Engineering, 11(2), 169–174. https://doi.org/10.31202/ecjse.1369680
Fekr, A. R., Janidarmian, M., Radecka, K., & Zilic, Z. (2014). A medical cloud-based platform for
respiration rate measurement and hierarchical classification of breath disorders. Sensors, 14(6),
11204–11224. https://doi.org/10.3390/s140611204
Gookyi, D. A. N., Wulnye, F. A., Wilson, M., Danquah, P., Danso, S. A., & Gariba, A. A. (2024).
Enabling Intelligence on the Edge: Leveraging Edge Impulse to Deploy Multiple Deep
Learning Models on Edge Devices for Tomato Leaf Disease Detection. AgriEngineering, 6(4),
3563–3585. https://doi.org/10.3390/agriengineering6040203
Hernández-Martínez, J. C., Martínez-Morales, N., & Salinas-Cardona, D. L. (2022). La respiración en
diplópodos: experiencias pedagógicas orientadas hacia la enseñanza de la Biología. Bio-grafía,
15(29), 93–104. https://doi.org/10.17227/bio-grafia.vol.15.num29-17384
Horvath, M. A., Hu, L., Mueller, T., Hochstein, J., Rosalia, L., Hibbert, K. A., Hardin, C. C., & Roche,
E. T. (2020). An organosynthetic soft robotic respiratory simulator. APL Bioengineering, 4(2),
026108. https://doi.org/10.1063/1.5140760
Hymel, S., Banbury, C., Situnayake, D., Elium, A., Ward, C., Kelcey, M., Baaijens, M., Majchrzycki,
M., Plunkett, J., Tischler, D., Grande, A., Moreau, L., Maslov, D., Beavis, A., Jongboom, J., &
Janapa Reddi, V. (2023). Edge Impulse: An MLOps platform for tiny machine learning. arXiv.
https://arxiv.org/abs/2212.03332
Kwon, C.-K. (2023). Development of embedded machine learning finger number recognition
application using Edge Impulse Platform. Proceedings of the 2023 Congress in Computer
Science, Computer Engineering, & Applied Computing (CSCE), 2697–2699. IEEE.
https://doi.org/10.1109/CSCE60160.2023.00433
Laganà, M. M., Di Tella, S., Ferrari, F., Pelizzari, L., Cazzoli, M., Alperin, N., Jin, N., Zacà, D., Baselli,
G., & Baglio, F. (2022). Blood and cerebrospinal fluid flow oscillations measured with real-
time phase-contrast MRI: Breathing mode matters. Fluids and Barriers of the CNS, 19(1), 100.
https://doi.org/10.1186/s12987-022-00394-0
Levin, M., Selberg, J., & Rolandi, M. (2019). Endogenous bioelectrics in development, cancer, and
regeneration: Drugs and bioelectronic devices as electroceuticals for regenerative medicine.