Efecto Legado como Estrategia de Manejo en las Enfermedades Cardiovasculares, Revisión de Tema a Propósito de un Fenómeno Clínico Complejo

Palabras clave: metabolico, diabetes, hipertensión, genética, epidemiologia

Resumen

En medicina, un efecto legado se define como el efecto beneficioso sostenido de un tratamiento determinado sobre los resultados de la enfermedad, incluso después de la interrupción de la intervención. Descrito inicialmente en el control optimizado de la diabetes, también se observó en ensayos clínicos que exploraban estrategias de intensificación para otros factores de riesgo cardiovascular, como la hipertensión o la hipercolesterolemia. Los mecanismos del legado se descifraron particularmente en la diabetes, lo que llevó al concepto de memoria metabólica. De manera más discreta, también se describieron otros fenómenos de la memoria en estudios preclínicos que demostraron efectos deletéreos de larga duración de los lípidos o la angiotensina II sobre los componentes de la pared vascular. Curiosamente, los cambios epigenéticos y las especies reactivas de oxígeno (ROS) parecen ser características comunes de la "memoria" de la pared vascular.

Descargas

La descarga de datos todavía no está disponible.

Citas

Fuster V., Kelly B.B., editors. Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health. National Academies Press; Washington, DC, USA: 2010. The National Academies Collection: Reports Funded by National Institutes of Health.

Parati G., Bilo G., Ochoa J.E. Benefits of tight blood pressure control in diabetic patients with hypertension: Importance of early and sustained implementation of effective treatment strategies. Diabetes Care. 2011;34((Suppl. 2)):S297–S303. doi: 10.2337/dc11-s243.

Zanchetti A. Bottom blood pressure or bottom cardiovascular risk? How far can cardiovascular risk be reduced? J. Hypertens. 2009;27:1509–1520. doi: 10.1097/HJH.0b013e32832e9500.

Diabetes Control and Complications Trial Research Group The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993;329:977–986. doi: 10.1056/NEJM199309303291401.

UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) Lancet. 1998;352:837–853. doi: 10.1016/S0140-6736(98)07019-6.

Khunti K., Kosiborod M., Ray K.K. Legacy benefits of blood glucose, blood pressure and lipid control in individuals with diabetes and cardiovascular disease: Time to overcome multifactorial therapeutic inertia? Diabetes Obes. Metab. 2018;20:1337–1341. doi: 10.1111/dom.13243.

Natarajan R. Epigenetic Mechanisms in Diabetic Vascular Complications and Metabolic Memory: The 2020 Edwin Bierman Award Lecture. Diabetes. 2021;70:328–337. doi: 10.2337/dbi20-0030.

Sohrabi Y., Lagache S.M.M., Schnack L., Godfrey R., Kahles F., Bruemmer D., Waltenberger J., Findeisen H.M. mTOR-Dependent Oxidative Stress Regulates oxLDL-Induced Trained Innate Immunity in Human Monocytes. Front. Immunol. 2018;9:3155. doi: 10.3389/fimmu.2018.03155.

Nathan D.M., Cleary P.A., Backlund J.Y., Genuth S.M., Lachin J.M., Orchard T.J., Raskin P., Zinman B., The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 2005;353:2643–2653. doi: 10.1056/NEJMoa052187.

Holman R.R., Paul S.K., Bethel M.A., Matthews D.R., Neil H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008;359:1577–1589. doi: 10.1056/NEJMoa0806470.

Duckworth W., Abraira C., Moritz T., Reda D., Emanuele N., Reaven P.D., Zieve F.J., Marks J., Davis S.N., Hayward R., et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 2009;360:129–139. doi: 10.1056/NEJMoa0808431.

Hayward R.A., Reaven P.D., Wiitala W.L., Bahn G.D., Reda D.J., Ge L., McCarren M., Duckworth W.C., Emanuele N.V., Investigators V. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2015;372:2197–2206. doi: 10.1056/NEJMoa1414266.

Reaven P.D., Emanuele N.V., Wiitala W.L., Bahn G.D., Reda D.J., McCarren M., Duckworth W.C., Hayward R.A., Investigators V. Intensive Glucose Control in Patients with Type 2 Diabetes—15-Year Follow-up. N. Engl. J. Med. 2019;380:2215–2224.

doi: 10.1056/NEJMoa1806802.

Action to Control Cardiovascular Risk in Diabetes Study Group. Gerstein H.C., Miller M.E., Byington R.P., Goff D.C., Jr., Bigger J.T., Buse J.B., Cushman W.C., Genuth S., Ismail-Beigi F., et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008;358:2545–2559. doi: 10.1056/NEJMoa0802743.

ACCORD Study Group Nine-Year Effects of 3.7 Years of Intensive Glycemic Control on Cardiovascular Outcomes. Diabetes Care. 2016;39:701–708. doi: 10.2337/dc15-2283.

ADVANCE Colaborative Group. Patel A., MacMahon S., Chalmers J., Neal B., Billot L., Woodward M., Marre M., Cooper M., Glasziou P., et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008;358:2560–2572. doi: 10.1056/NEJMoa0802987.

Zoungas S., Chalmers J., Neal B., Billot L., Li Q., Hirakawa Y., Arima H., Monaghan H., Joshi R., Colagiuri S., et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N. Engl. J. Med. 2014;371:1392–1406. doi: 10.1056/NEJMoa1407963.

Davis T.M., Chubb S.A., Bruce D.G., Davis W.A. Metabolic memory and all-cause death in community-based patients with type 2 diabetes: The Fremantle Diabetes Study. Diabetes Obes. Metab. 2016;18:598–606. doi: 10.1111/dom.12655.

Simmons R.K., Griffin S.J., Lauritzen T., Sandbaek A. Effect of screening for type 2 diabetes on risk of cardiovascular disease and mortality: A controlled trial among 139,075 individuals diagnosed with diabetes in Denmark between 2001 and 2009. Diabetologia. 2017;60:2192–2199. doi: 10.1007/s00125-017-4299-y.

Simmons R.K., Griffin S.J., Witte D.R., Borch-Johnsen K., Lauritzen T., Sandbaek A. Effect of population screening for type 2 diabetes and cardiovascular risk factors on mortality rate and cardiovascular events: A controlled trial among 1,912,392 Danish adults. Diabetologia. 2017;60:2183–2191. doi: 10.1007/s00125-017-4323-2.

Laiteerapong N., Ham S.A., Gao Y., Moffet H.H., Liu J.Y., Huang E.S., Karter A.J. The Legacy Effect in Type 2 Diabetes: Impact of Early Glycemic Control on Future Complications (The Diabetes & Aging Study) Diabetes Care. 2019;42:416–426. doi: 10.2337/dc17-1144.

Engerman R.L., Kern T.S. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes. 1987;36:808–812. doi: 10.2337/diab.36.7.808.

Roy S., Sala R., Cagliero E., Lorenzi M. Overexpression of fibronectin induced by diabetes or high glucose: Phenomenon with a memory. Proc. Natl. Acad. Sci. USA. 1990;87:404–408. doi: 10.1073/pnas.87.1.404.

Hammes H.P., Klinzing I., Wiegand S., Bretzel R.G., Cohen A.M., Federlin K. Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Investig. Ophthalmol. Vis. Sci. 1993;34:2092–2096.

Reddy M.A., Zhang E., Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58:443–455. doi: 10.1007/s00125-014-3462-y.

Villeneuve L.M., Reddy M.A., Natarajan R. Epigenetics: Deciphering its role in diabetes and its chronic complications. Clin. Exp. Pharmacol. Physiol. 2011;38:451–459. doi: 10.1111/j.1440-1681.2011.05497.x.

Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010;107:1058–1070. doi: 10.1161/CIRCRESAHA.110.223545.

Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 2005;54:1615–1625. doi: 10.2337/diabetes.54.6.1615.

Paneni F., Volpe M., Luscher T.F., Cosentino F. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: Bringing all the strands together. Diabetes. 2013;62:1800–1807. doi: 10.2337/db12-1648.

Jin J., Wang X., Zhi X., Meng D. Epigenetic regulation in diabetic vascular complications. J. Mol. Endocrinol. 2019;63:R103–R115. doi: 10.1530/JME-19-0170.

Brasacchio D., Okabe J., Tikellis C., Balcerczyk A., George P., Baker E.K., Calkin A.C., Brownlee M., Cooper M.E., El-Osta A. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes. 2009;58:1229–1236. doi: 10.2337/db08-1666.

Paneni F., Mocharla P., Akhmedov A., Costantino S., Osto E., Volpe M., Luscher T.F., Cosentino F. Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ. Res. 2012;111:278–289. doi: 10.1161/CIRCRESAHA.112.266593.

De Rosa S., Arcidiacono B., Chiefari E., Brunetti A., Indolfi C., Foti D.P. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front. Endocrinol. 2018;9:2. doi: 10.3389/fendo.2018.00002.

Miao F., Chen Z., Genuth S., Paterson A., Zhang L., Wu X., Li S.M., Cleary P., Riggs A., Harlan D.M., et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes. 2014;63:1748–1762. doi: 10.2337/db13-1251.

Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N. Engl. J. Med. 1998;339:1349–1357.

doi: 10.1056/NEJM199811053391902.

Group L.S. Long-term effectiveness and safety of pravastatin in 9014 patients with coronary heart disease and average cholesterol concentrations: The LIPID trial follow-up. Lancet. 2002;359:1379–1387. doi: 10.1016/S0140-6736(02)08351-4.

Sever P.S., Dahlof B., Poulter N.R., Wedel H., Beevers G., Caulfield M., Collins R., Kjeldsen S.E., Kristinsson A., McInnes G.T., et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): A multicentre randomised controlled trial. Lancet. 2003;361:1149–1158. doi: 10.1016/S0140-6736(03)12948-0.

Sever P.S., Chang C.L., Gupta A.K., Whitehouse A., Poulter N.R., Investigators A. The Anglo-Scandinavian Cardiac Outcomes Trial: 11-year mortality follow-up of the lipid-lowering arm in the U.K. Eur. Heart J. 2011;32:2525–2532. doi: 10.1093/eurheartj/ehr333.

Shepherd J., Cobbe S.M., Ford I., Isles C.G., Lorimer A.R., MacFarlane P.W., McKillop J.H., Packard C.J. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 1995;333:1301–1307. doi: 10.1056/NEJM199511163332001.

Ford I., Murray H., McCowan C., Packard C.J. Long-Term Safety and Efficacy of Lowering Low-Density Lipoprotein Cholesterol With Statin Therapy: 20-Year Follow-Up of West of Scotland Coronary Prevention Study. Circulation. 2016;133:1073–1080.

doi: 10.1161/CIRCULATIONAHA.115.019014.

Group A.S., Ginsberg H.N., Elam M.B., Lovato L.C., Crouse J.R., 3rd, Leiter L.A., Linz P., Friedewald W.T., Buse J.B., Gerstein H.C., et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 2010;362:1563–1574. doi: 10.1056/NEJMoa1001282.

Zhu L., Hayen A., Bell K.J.L. Legacy effect of fibrate add-on therapy in diabetic patients with dyslipidemia: A secondary analysis of the ACCORDION study. Cardiovasc. Diabetol. 2020;19:28. doi: 10.1186/s12933-020-01002-x.

Yusuf S., Bosch J., Dagenais G., Zhu J., Xavier D., Liu L., Pais P., Lopez-Jaramillo P., Leiter L.A., Dans A., et al. Cholesterol Lowering in Intermediate-Risk Persons without Cardiovascular Disease. N. Engl. J. Med. 2016;374:2021–2031. doi: 10.1056/NEJMoa1600176.

Bosch J., Lonn E.M., Jung H., Zhu J., Liu L., Lopez-Jaramillo P., Pais P., Xavier D., Diaz R., Dagenais G., et al. Lowering cholesterol, blood pressure, or both to prevent cardiovascular events: Results of 8.7 years of follow-up of Heart Outcomes Evaluation Prevention (HOPE)-3 study participants. Eur. Heart J. 2021;42:2995–3007. doi: 10.1093/eurheartj/ehab225.

Nayak A., Hayen A., Zhu L., McGeechan K., Glasziou P., Irwig L., Doust J., Gregory G., Bell K. Legacy effects of statins on cardiovascular and all-cause mortality: A meta-analysis. BMJ Open. 2018;8:e020584. doi: 10.1136/bmjopen-2017-020584.

ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT) JAMA. 2002;288:2998–3007. doi: 10.1001/jama.288.23.2998.

Margolis K.L., Davis B.R., Baimbridge C., Ciocon J.O., Cuyjet A.B., Dart R.A., Einhorn P.T., Ford C.E., Gordon D., Hartney T.J., et al. Long-term follow-up of moderately hypercholesterolemic hypertensive patients following randomization to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT) J. Clin. Hypertens. 2013;15:542–554. doi: 10.1111/jch.12139.

Ho C.L.B., Chowdhury E.K., Breslin M., Doust J., Reid C.M., Wing L.M.H., Nelson M.R., 2nd Australian National Blood Pressure Study Management Committee Short- and long-term association of lipid-lowering drug treatment and cardiovascular disease by estimated absolute risk in the Second Australian National Blood Pressure study. J. Clin. Lipidol. 2019;13:148–155. doi: 10.1016/j.jacl.2018.08.014.

Lewandowski A.J., Lazdam M., Davis E., Kylintireas I., Diesch J., Francis J., Neubauer S., Singhal A., Lucas A., Kelly B., et al. Short-term exposure to exogenous lipids in premature infants and long-term changes in aortic and cardiac function. Arterioscler. Thromb. Vasc. Biol. 2011;31:2125–2135. doi: 10.1161/ATVBAHA.111.227298.

Sohrabi Y., Godfrey R., Findeisen H.M. Altered Cellular Metabolism Drives Trained Immunity. Trends Endocrinol. Metab. 2018;29:602–605. doi: 10.1016/j.tem.2018.03.012.

Sohrabi Y., Lagache S.M.M., Voges V.C., Semo D., Sonntag G., Hanemann I., Kahles F., Waltenberger J., Findeisen H.M. OxLDL-mediated immunologic memory in endothelial cells. J. Mol. Cell. Cardiol. 2020;146:121–132. doi: 10.1016/j.yjmcc.2020.07.006.

Schnack L., Sohrabi Y., Lagache S.M.M., Kahles F., Bruemmer D., Waltenberger J., Findeisen H.M. Mechanisms of Trained Innate Immunity in oxLDL Primed Human Coronary Smooth Muscle Cells. Front. Immunol. 2019;10:13. doi: 10.3389/fimmu.2019.00013.

Bekkering S., Quintin J., Joosten L.A., van der Meer J.W., Netea M.G., Riksen N.P. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler. Thromb. Vasc. Biol. 2014;34:1731–1738. doi: 10.1161/ATVBAHA.114.303887.

Keating S.T., Groh L., Thiem K., Bekkering S., Li Y., Matzaraki V., van der Heijden C., van Puffelen J.H., Lachmandas E., Jansen T., et al. Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein. J. Mol. Med. 2020;98:819–831. doi: 10.1007/s00109-020-01915-w.

Bekkering S., van den Munckhof I., Nielen T., Lamfers E., Dinarello C., Rutten J., de Graaf J., Joosten L.A., Netea M.G., Gomes M.E., et al. Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo. Atherosclerosis. 2016;254:228–236. doi: 10.1016/j.atherosclerosis.2016.10.019.

Kostis W.J., Thijs L., Richart T., Kostis J.B., Staessen J.A. Persistence of mortality reduction after the end of randomized therapy in clinical trials of blood pressure-lowering medications. Hypertension. 2010;56:1060–1068. doi: 10.1161/HYPERTENSIONAHA.110.160291.

SHEP Cooperative Research Group Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP) JAMA. 1991;265:3255–3264. doi: 10.1001/jama.1991.03460240051027.

Kostis J.B., Cabrera J., Cheng J.Q., Cosgrove N.M., Deng Y., Pressel S.L., Davis B.R. Association between chlorthalidone treatment of systolic hypertension and long-term survival. JAMA. 2011;306:2588–2593. doi: 10.1001/jama.2011.1821.

Haller H., Ito S., Izzo J.L., Jr., Januszewicz A., Katayama S., Menne J., Mimran A., Rabelink T.J., Ritz E., Ruilope L.M., et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N. Engl. J. Med. 2011;364:907–917. doi: 10.1056/NEJMoa1007994.

Menne J., Ritz E., Ruilope L.M., Chatzikyrkou C., Viberti G., Haller H. The Randomized Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) observational follow-up study: Benefits of RAS blockade with olmesartan treatment are sustained after study discontinuation. J. Am. Heart Assoc. 2014;3:e000810. doi: 10.1161/JAHA.114.000810.

Dahlof B., Sever P.S., Poulter N.R., Wedel H., Beevers D.G., Caulfield M., Collins R., Kjeldsen S.E., Kristinsson A., McInnes G.T., et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): A multicentre randomised controlled trial. Lancet. 2005;366:895–906. doi: 10.1016/S0140-6736(05)67185-1.

Gupta A., Mackay J., Whitehouse A., Godec T., Collier T., Pocock S., Poulter N., Sever P. Long-term mortality after blood pressure-lowering and lipid-lowering treatment in patients with hypertension in the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) Legacy study: 16-year follow-up results of a randomised factorial trial. Lancet. 2018;392:1127–1137. doi: 10.1016/S0140-6736(18)31776-8.

UK Prospective Diabetes Study Group Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317:703–713. doi: 10.1136/bmj.317.7160.703.

Holman R.R., Paul S.K., Bethel M.A., Neil H.A., Matthews D.R. Long-term follow-up after tight control of blood pressure in type 2 diabetes. N. Engl. J. Med. 2008;359:1565–1576. doi: 10.1056/NEJMoa0806359.

Lonn E.M., Bosch J., Lopez-Jaramillo P., Zhu J., Liu L., Pais P., Diaz R., Xavier D., Sliwa K., Dans A., et al. Blood-Pressure Lowering in Intermediate-Risk Persons without Cardiovascular Disease. N. Engl. J. Med. 2016;374:2009–2020. doi: 10.1056/NEJMoa1600175.

Cushman W.C., Davis B.R., Pressel S.L., Cutler J.A., Einhorn P.T., Ford C.E., Oparil S., Probstfield J.L., Whelton P.K., Wright J.T., Jr., et al. Mortality and morbidity during and after the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. J. Clin. Hypertens. 2012;14:20–31. doi: 10.1111/j.1751-7176.2011.00568.x.

Wing L.M., Reid C.M., Ryan P., Beilin L.J., Brown M.A., Jennings G.L., Johnston C.I., McNeil J.J., Macdonald G.J., Marley J.E., et al. A comparison of outcomes with angiotensin-converting--enzyme inhibitors and diuretics for hypertension in the elderly. N. Engl. J. Med. 2003;348:583–592. doi: 10.1056/NEJMoa021716.

Nelson M.R., Chowdhury E.K., Doust J., Reid C.M., Wing L.M. Ten-year legacy effects of baseline blood pressure ’treatment naivety’ in the Second Australian National Blood Pressure study. J. Hypertens. 2015;33:2331–2337. doi: 10.1097/HJH.0000000000000709.

Ho C.L.B., Sanders S., Breslin M., Doust J., Reid C.M., Davis B.R., Simpson L.M., Brouwers F.P., Nelson M.R. Legacy effect of delayed blood pressure lowering drug treatment in middle-aged adults with mildly elevated blood pressure: Systematic review and meta-analysis. J. Hum. Hypertens. 2020;34:261–270. doi: 10.1038/s41371-020-0323-7.

Dusing R. Pharmacological interventions into the renin-angiotensin system with ACE inhibitors and angiotensin II receptor antagonists: Effects beyond blood pressure lowering. Ther. Adv. Cardiovasc. Dis. 2016;10:151–161. doi: 10.1177/1753944716644130.

Dahlof B., Devereux R.B., Kjeldsen S.E., Julius S., Beevers G., de Faire U., Fyhrquist F., Ibsen H., Kristiansson K., Lederballe-Pedersen O., et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet. 2002;359:995–1003. doi: 10.1016/S0140-6736(02)08089-3.

Forrester S.J., Booz G.W., Sigmund C.D., Coffman T.M., Kawai T., Rizzo V., Scalia R., Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018;98:1627–1738. doi: 10.1152/physrev.00038.2017.

Karnik S.S., Unal H., Kemp J.R., Tirupula K.C., Eguchi S., Vanderheyden P.M., Thomas W.G. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli (corrected) Pharmacol. Rev. 2015;67:754–819. doi: 10.1124/pr.114.010454.

Gomolak J.R., Didion S.P. Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation. Front. Physiol. 2014;5:396. doi: 10.3389/fphys.2014.00396.

Harrison C.B., Trevelin S.C., Richards D.A., Santos C.X.C., Sawyer G., Markovinovic A., Zhang X., Zhang M., Brewer A.C., Yin X., et al. Fibroblast Nox2 (NADPH Oxidase-2) Regulates ANG II (Angiotensin II)-Induced Vascular Remodeling and Hypertension via Paracrine Signaling to Vascular Smooth Muscle Cells. Arterioscler. Thromb. Vasc. Biol. 2021;41:698–710. doi: 10.1161/ATVBAHA.120.315322.

Togashi N., Maeda T., Yoshida H., Koyama M., Tanaka M., Furuhashi M., Shimamoto K., Miura T. Angiotensin II receptor activation in youth triggers persistent insulin resistance and hypertension--a legacy effect? Hypertens. Res. 2012;35:334–340. doi: 10.1038/hr.2011.206.

Wang H.X., Yang H., Han Q.Y., Li N., Jiang X., Tian C., Du J., Li H.H. NADPH oxidases mediate a cellular “memory” of angiotensin II stress in hypertensive cardiac hypertrophy. Free Radic. Biol. Med. 2013;65:897–907. doi: 10.1016/j.freeradbiomed.2013.08.179.

Li W.J., Liu Y., Wang J.J., Zhang Y.L., Lai S., Xia Y.L., Wang H.X., Li H.H. "Angiotensin II memory" contributes to the development of hypertension and vascular injury via activation of NADPH oxidase. Life Sci. 2016;149:18–24. doi: 10.1016/j.lfs.2016.02.037.

Prasher D., Greenway S.C., Singh R.B. The impact of epigenetics on cardiovascular disease. Biochem. Cell Biol. 2020;98:12–22. doi: 10.1139/bcb-2019-0045.

Masi S., Ambrosini S., Mohammed S.A., Sciarretta S., Luscher T.F., Paneni F., Costantino S. Epigenetic Remodeling in Obesity-Related Vascular Disease. Antioxid. Redox Signal. 2021;34:1165–1199. doi: 10.1089/ars.2020.8040.

Ramzan F., Vickers M.H., Mithen R.F. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int. J. Mol. Sci. 2021;22:5047. doi: 10.3390/ijms22095047.

Advani A., Huang Q., Thai K., Advani S.L., White K.E., Kelly D.J., Yuen D.A., Connelly K.A., Marsden P.A., Gilbert R.E. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism. Am. J. Pathol. 2011;178:2205–2214. doi: 10.1016/j.ajpath.2011.01.044.

Hong Q., Zhang L., Das B., Li Z., Liu B., Cai G., Chen X., Chuang P.Y., He J.C., Lee K. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 2018;93:1330–1343. doi: 10.1016/j.kint.2017.12.008.

Zhou X., Zang X., Ponnusamy M., Masucci M.V., Tolbert E., Gong R., Zhao T.C., Liu N., Bayliss G., Dworkin L.D., et al. Enhancer of Zeste Homolog 2 Inhibition Attenuates Renal Fibrosis by Maintaining Smad7 and Phosphatase and Tensin Homolog Expression. J. Am. Soc. Nephrol. 2016;27:2092–2108. doi: 10.1681/ASN.2015040457.

Kato M., Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol. 2019;15:327–345. doi: 10.1038/s41581-019-0135-6.

Serrano Ruiz, R. E. (2023). Prevalencia de infecciones TORCH en mujeres embarazadas del cantón Olmedo: Un llamado a la prevención y control. Estudios Y Perspectivas Revista Científica Y Académica , 3(1), 174-194. https://doi.org/10.61384/r.c.a.v3i1.29

Ríos Castro , N. (2022). La Evaluación y el Manejo del Dolor en Pacientes con Enfermedad Terminal. Revista Científica De Salud Y Desarrollo Humano, 3(2), 80-95. https://doi.org/10.61368/r.s.d.h.v3i2.37

Naranjo , F. (2023). Diplomado sobre la transformación digital empresarial: reduciendo las brechas digitales. Emergentes - Revista Científica, 3(2), 56-69. https://doi.org/10.60112/erc.v3i2.33

Morales Fretes , C. D. (2023). Estrategias motivacionales en el desempeño laboral de los empleados en empresas de la Ciudad de Pilar 2023. Sapiencia Revista Científica Y Académica , 3(2), 62-74. https://doi.org/10.61598/s.r.c.a.v3i2.51

ANE. National Spectrum Agency. Resolution Number 442 of 22 August 2013. Available online: https://normograma.mintic.gov.co/mintic/docs/resolucion_mintic_0963_2019.htm (accessed on 1 April 2021).

Publicado
2024-03-26
Cómo citar
Theran león , J. S., Perez Ardila, L. J., Camacho Santamaria , M. J., Quintero Quintero, V., Zapata Campo, E. R., Osorio Corzo, M. J., Acuña Cantillo, F. A., Jiménez Romero, L. D., Angulo Medina, R. A., Choles Solano , M. J., & Arias Pinto, F. A. (2024). Efecto Legado como Estrategia de Manejo en las Enfermedades Cardiovasculares, Revisión de Tema a Propósito de un Fenómeno Clínico Complejo. Ciencia Latina Revista Científica Multidisciplinar, 8(1), 8513-8541. https://doi.org/10.37811/cl_rcm.v8i1.10179
Sección
Ciencias de la Salud

Artículos más leídos del mismo autor/a