Novedades en Manejo de Asma Bronquial: Revisión de la Literatura y Aplicación en la Vida Real de la Evidencia Científica Disponible
Resumen
Se presenta una detallada revisión sobre los avances recientes en el tratamiento del asma bronquial. En los últimos años, se ha mejorado significativamente la comprensión del papel de las células residentes y se han desarrollado nuevas herramientas para la endotipificación del asma, lo que ha llevado a recomendaciones actualizadas en las guías internacionales. Estas guías abogan por un enfoque estratificado centrado en las necesidades del paciente y en los resultados deseados, con regímenes de dosificación simplificados que mejoran la adherencia a las terapias a largo plazo. En términos de mecanismos fisiopatológicos, el documento destaca la importancia de la inmunidad innata desregulada en el asma, donde las células epiteliales bronquiales liberan citoquinas como IL-33 y TSLP, activando células linfoides innatas del grupo 2 (ILC2). También se describen los endotipos T2 y no T2, con el primero impulsado por citoquinas epiteliales e ILC2, y el segundo abarcando tanto endotipos inflamatorios (con citoquinas como IL-17, IL-8 e IL-6) como no inflamatorios, caracterizados por cambios estructurales y neuroinflamación. Además, el daño severo de la barrera epitelial se identifica como un factor clave en la fisiopatología del asma, sugiriendo que la modulación epigenética podría ser una estrategia significativa para restaurar la integridad de esta barrera. Los ensayos clínicos recientes han demostrado que regímenes de dosificación simplificados, como la combinación de budesonida/formoterol según necesidad, pueden lograr un mejor control del asma y reducir las exacerbaciones en comparación con otros tratamientos. Los productos biológicos, como tezepelumab y dupilumab, han mostrado promesas significativas en la mejora de los resultados en diferentes fenotipos de asma, aunque su alto costo plantea desafíos en términos de acceso y sostenibilidad. El impacto del cambio climático en la salud respiratoria también es abordado, destacando cómo la alergia al polen, la proliferación de moho y la frecuencia de incendios forestales afectan negativamente a los pacientes asmáticos. Se enfatiza la importancia de enfoques holísticos e interdisciplinarios como One Health, EcoHealth y Planetary Health para salvaguardar la salud en un contexto de cambio climático. Las nuevas guías internacionales han reemplazado el modelo de "talla única" por un enfoque estratificado, adaptando el tratamiento a la gravedad y fenotipo del asma. La pandemia de COVID-19 ha tenido un impacto significativo en el tratamiento del asma, con estudios iniciales que muestran una baja incidencia de COVID-19 en pacientes asmáticos, posiblemente debido a la alta adherencia a las medidas de protección y el uso de corticoides inhalados que pueden reducir la expresión del receptor ACE2.
Descargas
Citas
Agache I, Akdis C, Jutel M, Virchow JC. Untangling asthma phenotypes and endotypes. Allergy. 2012; 67(7): 835- 846. doi:https://doi.org/10.1111/j.1398-9995.2012.02832.x. Epub 2012 May 17 PMID: 22594878.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest. 2019; 129(4): 1493- 1503. doi:https://doi.org/10.1172/JCI124611. PMID: 30855278; PMCID: PMC6436902.
CrossrefPubMedWeb of Science®Google Scholar
Agache I. Severe asthma phenotypes and endotypes. Semin Immunol. 2019; 46: doi: https://doi.org/10.1016/j.smim.2019.101301 . Epub 2019 Aug 27 PMID: 31466925.
CrossrefPubMedWeb of Science®Google Scholar
Han X, Krempski JW, Nadeau K. Advances and novel developments in mechanisms of allergic inflammation. Allergy. 2020; 75(12): 3100- 3111. doi: https://doi.org/10.1111/all.14632 . Epub 2020 Nov 4 PMID: 33068299.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Chung KF, Adcock IM. Precision medicine for the discovery of treatable mechanisms in severe asthma. Allergy. 2019; 74(9): 1649- 1659. doi: https://doi.org/10.1111/all.13771 . Epub 2019 Apr 15 PMID: 30865306.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Cevhertas L, Ogulur I, Maurer DJ, et al. Advances and recent developments in asthma in 2020. Allergy. 2020; 75(12): 3124- 3146. doi: https://doi.org/10.1111/all.14607 . Epub 2020 Oct 16 PMID: 32997808.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Akdis CA, Arkwright PD, Brüggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020; 75(7): 1582- 1605. doi: https://doi.org/10.1111/all.14318 . Epub 2020 May 10 PMID: 32319104.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Hong H, Liao S, Chen F, Yang Q, Wang DY. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy. 2020; 75(11): 2794- 2804. doi: https://doi.org/10.1111/all.14526 . Epub 2020 Aug 14 PMID: 32737888.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Ye L, Pan J, Liang M, et al. A critical role for c-Myc in group 2 innate lymphoid cell activation. Allergy. 2020; 75(4): 841- 852. doi: https://doi.org/10.1111/all.14149 . Epub 2020 Jan 29. PMID: 31833571; PMCID: PMC7176544.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Kim J, Kim YC, Ham J, et al. The effect of air pollutants on airway innate immune cells in patients with asthma. Allergy. 2020; 75(9): 2372- 2376. doi: https://doi.org/10.1111/all.14323 . Epub 2020 May 5 PMID: 32301125.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Orimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue–resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy. 2021. doi: https://doi.org/10.1111/all.14863 . Epub ahead of print. PMID: 33866593.
Wiley Online LibraryWeb of Science®Google Scholar
Matsuyama T, Machida K, Motomura Y, et al. Long-acting muscarinic antagonist regulates group 2 innate lymphoid cell-dependent airway eosinophilic inflammation. Allergy. 2021; 76(9): 2785- 2796. doi: https://doi.org/10.1111/all.14836 . PMID: 33792078.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Cephus JY, Gandhi VD, Shah R, et al. Estrogen receptor-α signaling increases allergen-induced IL-33 release and airway inflammation. Allergy. 2021; 76(1): 255- 268. doi: https://doi.org/10.1111/all.14491 . Epub 2020 Jul 26. PMID: 32648964; PMCID: PMC7790897.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Toki S, Goleniewska K, Zhang J, et al. TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy. 2020; 75(7): 1606- 1617. doi: https://doi.org/10.1111/all.14196 . Epub 2020 Feb 24. PMID: 31975538; PMCID: PMC7354889.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Saku A, Suehiro KI, Nakamura K, et al. Mice lacking fucosyltransferase 2 show reduced innate allergic inflammation in the airways. Allergy. 2020; 75(5): 1253- 1256. doi: https://doi.org/10.1111/all.14101 . Epub 2019 Nov 28 PMID: 31709563.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Barretto KT, Brockman-Schneider RA, Kuipers I, et al. Human airway epithelial cells express a functional IL-5 receptor. Allergy. 2020; 75(8): 2127- 2130. doi: https://doi.org/10.1111/all.14297 . Epub 2020 Apr 14. PMID: 32246831; PMCID: PMC7387204.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Kaur D, Chachi L, Gomez E, et al. ST2 expression and release by the bronchial epithelium is downregulated in asthma. Allergy. 2020; 75(12): 3184- 3194. doi: https://doi.org/10.1111/all.14436 . Epub 2020 Jul 27 PMID: 32516479.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Kaur D, Gomez E, Doe C, et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk. Allergy. 2015; 70(5): 556- 567. doi: https://doi.org/10.1111/all.12593 . Epub 2015 Mar 16. PMID: 25683166; PMCID: PMC4418379.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Mendez-Enriquez E, Alvarado-Vazquez PA, Abma W, et al. Mast cell-derived serotonin enhances methacholine-induced airway hyperresponsiveness in house dust mite-induced experimental asthma. Allergy. 2021; 76(7): 2057- 2069. doi: https://doi.org/10.1111/all.14748 . PMID: 33486786.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Barcik W, Pugin B, Brescó MS, et al. Bacterial secretion of histamine within the gut influences immune responses within the lung. Allergy. 2019; 74(5): 899- 909. doi: https://doi.org/10.1111/all.13709 . Epub 2019 Feb 7 PMID: 30589936.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Yang J, Scicluna BP, van Engelen TSR, et al. Transcriptional changes in alveolar macrophages from adults with asthma after allergen challenge. Allergy. 2020; 76(7): 2218- 2222. doi: https://doi.org/10.1111/all.14719 . PMID: 33368438.
Wiley Online LibraryWeb of Science®Google Scholar
Tiotiu A, Zounemat Kermani N, Badi Y, et al. Sputum macrophage diversity and activation in asthma: role of severity and inflammatory phenotype. Allergy. 2021; 76(3): 775- 788. doi: https://doi.org/10.1111/all.14535 . Epub 2020 Aug 17. PMID: 32740964.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Leite-de-Moraes M, Belo R, Dietrich C, Soussan D, Aubier M, Pretolani M. Circulating IL-4, IFNγ and IL-17 conventional and Innate-like T-cell producers in adult asthma. Allergy. 2020; 75(12): 3283- 3286. doi: https://doi.org/10.1111/all.14474 . Epub 2020 Jul 24 PMID: 32603483.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Choi Y, Kim YM, Lee HR, et al. Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy. 2020; 75(1): 95- 103. doi: https://doi.org/10.1111/all.13997 . Epub 2019 Nov 8 PMID: 31330043.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Granger V, Taillé C, Roach D, et al. Circulating neutrophil and eosinophil extracellular traps are markers of severe asthma. Allergy. 2020; 75(3): 699- 702. doi: https://doi.org/10.1111/all.14059 . Epub 2019 Oct 24 PMID: 31549729.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy. 2020; 75(4): 761- 768. doi: https://doi.org/10.1111/all.14001 . Epub 2019 Aug 20 PMID: 31355946.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Toki S, Newcomb DC, Printz RL, et al. Glucagon-like peptide-1 receptor agonist inhibits aeroallergen-induced activation of ILC2 and neutrophilic airway inflammation in obese mice. Allergy. 2021. doi: https://doi.org/10.1111/all.14879 . Epub ahead of print. PMID: 33955007.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Melum GR, Farkas L, Scheel C, et al. A thymic stromal lymphopoietin-responsive dendritic cell subset mediates allergic responses in the upper airway mucosa. J Allergy Clin Immunol. 2014; 134(3): 613. doi: https://doi.org/10.1016/j.jaci.2014.05.010 . Epub 2014 Jun 21 PMID: 24958565.
CrossrefCASPubMedWeb of Science®Google Scholar
Rank MA, Kobayashi T, Kozaki H, Bartemes KR, Squillace DL, Kita H. IL-33–activated dendritic cells induce an atypical TH2-type response. J Allergy Clin Immunol. 2009; 123(5): 1047- 1054. doi: https://doi.org/10.1016/j.jaci.2009.02.026 . Epub 2009 Apr 10. PMID: 19361843; PMCID: PMC2711963.
CrossrefCASPubMedWeb of Science®Google Scholar
Smole U, Gour N, Phelan J, et al. Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity. Nat Immunol. 2020; 21(7): 756- 765. doi: https://doi.org/10.1038/s41590-020-0698-1 . Epub 2020 Jun 22 PMID: 32572240.
CrossrefCASPubMedWeb of Science®Google Scholar
Moon HG, Kim SJ, Lee MK, et al. Colony-stimulating factor 1 and its receptor are new potential therapeutic targets for allergic asthma. Allergy. 2020; 75(2): 357- 369. doi: https://doi.org/10.1111/all.14011 . Epub 2019 Oct 11. PMID: 31385613; PMCID: PMC7002247.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Bartel S, La Grutta S, Cilluffo G, et al. Human airway epithelial extracellular vesicle miRNA signature is altered upon asthma development. Allergy. 2020; 75(2): 346- 356. doi: https://doi.org/10.1111/all.14008 . Epub 2019 Oct 2 PMID: 31386204.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
van Montfoort N, van der Aa E, Woltman AM. Understanding MHC class I presentation of viral antigens by human dendritic cells as a basis for rational design of therapeutic vaccines. Front Immunol. 2014; 5: 182. doi: https://doi.org/10.3389/fimmu.2014.00182 . PMID: 24795724; PMCID: PMC4005948.
PubMedWeb of Science®Google Scholar
Vroman H, van Uden D, Bergen IM, et al. Tnfaip3 expression in pulmonary conventional type 1 Langerin-expressing dendritic cells regulates T helper 2-mediated airway inflammation in mice. Allergy. 2020; 75(10): 2587- 2598. doi: https://doi.org/10.1111/all.14334 . Epub 2020 Jun 14. PMID: 32329078; PMCID: PMC7687104.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Maazi H, Lam J, Lombardi V, Akbari O. Role of plasmacytoid dendritic cell subsets in allergic asthma. Allergy. 2013; 68(6): 695- 701. doi: https://doi.org/10.1111/all.12166 . Epub 2013 May 11. PMID: 23662841; PMCID: PMC3693732.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Gill MA, Liu AH, Calatroni A, et al. Enhanced plasmacytoid dendritic cell antiviral responses after omalizumab. J Allergy Clin Immunol. 2018; 141(5): 1735. doi: https://doi.org/10.1016/j.jaci.2017.07.035 . Epub 2017 Sep 1. PMID: 28870461; PMCID: PMC6013066.
CrossrefCASPubMedWeb of Science®Google Scholar
Zhang M, Yu Q, Tang W, et al. Epithelial exosomal contactin-1 promotes monocyte-derived dendritic cell–dominant T-cell responses in asthma. J Allergy Clin Immunol. 2021:S0091-6749(21)00720-X. doi:https://doi.org/10.1016/j.jaci.2021.04.025. Epub ahead of print. PMID: 33957164.
CrossrefGoogle Scholar
Choi JP, Park SY, Moon KA, et al. Macrophage-derived progranulin promotes allergen-induced airway inflammation. Allergy. 2020; 75(5): 1133- 1145. doi: https://doi.org/10.1111/all.14129 . Epub 2020 Jan 31 PMID: 31758561.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Ullah MA, Vicente CT, Collinson N, et al. PAG1 limits allergen-induced type 2 inflammation in the murine lung. Allergy. 2020; 75(2): 336- 345. doi: https://doi.org/10.1111/all.13991 . Epub 2019 Oct 23 PMID: 31321783.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Böll S, Ziemann S, Ohl K, et al. Acid sphingomyelinase regulates TH 2 cytokine release and bronchial asthma. Allergy. 2020; 75(3): 603- 615. doi: https://doi.org/10.1111/all.14039 . Epub 2019 Oct 8 PMID: 31494944.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Asayama K, Kobayashi T, D'Alessandro-Gabazza CN, et al. Protein S protects against allergic bronchial asthma by modulating Th1/Th2 balance. Allergy. 2020; 75(9): 2267- 2278. doi: https://doi.org/10.1111/all.14261 . Epub 2020 Mar 23 PMID: 32145080.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Mukherjee M, Agache I. IL-13 signature in severe adult asthmatics with airway neutrophilia: a new endotype to treat! Allergy. 2021; 76(7): 1964- 1966. doi: https://doi.org/10.1111/all.14772 . PMID: 33583056.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Azim A, Green B, Lau L, et al. Peripheral airways type 2 inflammation, neutrophilia and microbial dysbiosis in severe asthma. Allergy. 2021; 76(7): 2070- 2078. doi: https://doi.org/10.1111/all.14732 . PMID: 33411348.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Sze E, Bhalla A, Nair P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy. 2020; 75(2): 311- 325. doi: https://doi.org/10.1111/all.13985 . Epub 2019 Aug 14 PMID: 31309578.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Zounemat Kermani N, Saqi M, Agapow P, et al. U-BIOPRED Project Team. Type 2-low asthma phenotypes by integration of sputum transcriptomics and serum proteomics. Allergy. 2021; 76(1): 380- 383. doi: https://doi.org/10.1111/all.14573 . Epub 2020 Sep 16. PMID: 32865817.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Saunders SP, Floudas A, Moran T, et al. Dysregulated skin barrier function in Tmem79 mutant mice promotes IL-17A-dependent spontaneous skin and lung inflammation. Allergy. 2020; 75(12): 3216- 3227. doi: https://doi.org/10.1111/all.14488 . Epub 2020 Jul 22 PMID: 32644214.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Carrard J, Marquillies P, Pichavant M, et al. Chronic exposure to benzo(a)pyrene-coupled nanoparticles worsens inflammation in a mite-induced asthma mouse model. Allergy. 2021; 76(5): 1562- 1565. doi: https://doi.org/10.1111/all.14619 . Epub 2020 Oct 23 PMID: 33037642.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Shim JS, Lee HS, Park DE, et al. Aggravation of asthmatic inflammation by chlorine exposure via innate lymphoid cells and CD11cintermediate macrophages. Allergy. 2020; 75(2): 381- 391. doi: https://doi.org/10.1111/all.14017 . Epub 2019 Sep 9 PMID: 31402462.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Brandt EB, Bolcas PE, Ruff BP, Khurana Hershey GK. IL33 contributes to diesel pollution-mediated increase in experimental asthma severity. Allergy. 2020; 75(9): 2254- 2266. doi: https://doi.org/10.1111/all.14181 . Epub 2020 Jan 31. PMID: 31922608; PMCID: PMC7347449.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Bouté M, Ait Yahia S, Nanou J, et al. Direct activation of the aryl hydrocarbon receptor by dog allergen participates in airway neutrophilic inflammation. Allergy. 2021; 76(7): 2245- 2249. https://doi.org/10.1111/all.14740 . PMID: 33465835.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Niessen NM, Gibson PG, Baines KJ, et al. Sputum TNF markers are increased in neutrophilic and severe asthma and are reduced by azithromycin treatment. Allergy. 2021; 76(7): 2090- 2101. doi: https://doi.org/10.1111/all.14768 . PMID: 33569770.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021. doi: https://doi.org/10.1038/s41577-021-00538-7 . Epub ahead of print. PMID: 33846604.
CrossrefPubMedWeb of Science®Google Scholar
Pat Y, Ogulur I. The epithelial barrier hypothesis: a 20-year journey. Allergy. 2021. doi: https://doi.org/10.1111/all.14899 . Epub ahead of print. PMID: 33982305.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Heijink IH, Kuchibhotla VNS, Roffel MP, et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy. 2020; 75(8): 1902- 1917. doi: https://doi.org/10.1111/all.14421 . Epub 2020 Jun 16. PMID: 32460363; PMCID: PMC7496351.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Angelina A, Martín-Fontecha M, Rückert B, et al. The cannabinoid WIN55212-2 restores rhinovirus-induced epithelial barrier disruption. Allergy. 2020; 76(6): 1900- 1902. doi: https://doi.org/10.1111/all.14707 . PMID: 33319366.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Xu J, Meng Y, Jia M, et al. Epithelial expression and role of secreted STC1 on asthma airway hyperresponsiveness through calcium channel modulation. Allergy. 2020; 76(8): 2475- 2487. doi: https://doi.org/10.1111/all.14727 . PMID: 33378582.
Wiley Online LibraryWeb of Science®Google Scholar
Hur GY, Pham A, Miller M, et al. ORMDL3 but not neighboring 17q21 gene LRRC3C is expressed in human lungs and lung cells of asthmatics. Allergy. 2020; 75(8): 2061- 2065. doi: https://doi.org/10.1111/all.14243 . Epub 2020 Mar 10. PMID: 32086831; PMCID: PMC7387186.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Perkins TN, Donnell ML, Oury TD. The axis of the receptor for advanced glycation endproducts in asthma and allergic airway disease. Allergy. 2021; 76(5): 1350- 1366. doi: https://doi.org/10.1111/all.14600 . Epub 2020 Oct 9 PMID: 32976640.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Folino A, Carriero V, Bullone M, et al. Muscarinic receptor M3 contributes to vascular and neural growth factor up-regulation in severe asthma. Allergy. 2020; 75(3): 717- 720. doi: https://doi.org/10.1111/all.14074 . Epub 2019 Oct 22 PMID: 31584702.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Bertolini F, Carriero V, Bullone M, et al. Correlation of matrix-related airway remodeling and bradykinin B1 receptor expression with fixed airflow obstruction in severe asthma. Allergy. 2020; 76(6): 1886- 1890. doi: https://doi.org/10.1111/all.14691 . PMID: 33284471.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Wawrzyniak P, Krawczyk K, Acharya S, et al. Inhibition of CpG methylation improves the barrier integrity of bronchial epithelial cells in asthma. Allergy. 2020; 76(6): 1864- 1868. doi: https://doi.org/10.1111/all.14667 . PMID: 33210726.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Dhondalay GKR, Bunning B, Bauer RN, et al. Transcriptomic and methylomic features in asthmatic and nonasthmatic twins. Allergy. 2020; 75(4): 989- 992. doi: https://doi.org/10.1111/all.14128 . Epub 2020 Jan 21. PMID: 31758558; PMCID: PMC7176546.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Bolcas PE, Brandt EB, Ruff BP, Kalra M, Khurana Hershey GK. Cysteamine prevents asthma development and reduces airway hyperresponsiveness in experimental asthma. Allergy. 2020; 75(10): 2675- 2677. doi: https://doi.org/10.1111/all.14332 . Epub 2020 May 6 PMID: 32311100.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Igarashi A, Matsumoto K, Matsuda A. MicroRNA-29s suppressed both soluble ST2 release and IFNAR1 expression in human bronchial epithelial cells. Allergy. 2021; 76(7): 2264- 2267. doi: https://doi.org/10.1111/all.14777 . PMID: 33583067.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Tasena H, Boudewijn IM, Faiz A, et al. MiR-31-5p: A shared regulator of chronic mucus hypersecretion in asthma and chronic obstructive pulmonary disease. Allergy. 2020; 75(3): 703- 706. doi: https://doi.org/10.1111/all.14060 . Epub 2019 Oct 23 PMID: 31545509.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Toubi E, Vadasz Z. Semaphorin3A is a promising therapeutic tool for bronchial asthma. Allergy. 2020; 75(2): 481- 483. doi: https://doi.org/10.1111/all.14026. Epub 2019 Oct 20 PMID: 31444800.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Kim SH, Jung HW, Kim M, et al. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy. 2020; 75(8): 1991- 2004. doi: https://doi.org/10.1111/all.14236. Epub 2020 Mar 12 PMID: 32072647.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Hirai K, Shirai T, Shimoshikiryo T, et al. Circulating microRNA-15b-5p as a biomarker for asthma-COPD overlap. Allergy. 2021; 76(3): 766- 774. doi: https://doi.org/10.1111/all.14520. Epub 2020 Aug 20 PMID: 32713026.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Breiteneder H, Peng YQ, Agache I, et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy. 2020; 75(12): 3039- 3068. doi: https://doi.org/10.1111/all.14582. Epub 2020 Sep 30. PMID: 32893900; PMCID: PMC7756301.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Fricker M, McDonald VM, Winter NA, et al. Molecular markers of type 2 airway inflammation are similar between eosinophilic severe asthma and eosinophilic COPD. Allergy. 2021; 76(7): 2079- 2089. doi: https://doi.org/10.1111/all.14741. PMID: 33470427.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Abdel-Aziz MI, de Vries R, Lammers A, et al. Cross-sectional biomarker comparisons in asthma monitoring using a longitudinal design: The eNose premise. Allergy. 2020; 75(10): 2690- 2693. doi: https://doi.org/10.1111/all.14354. Epub 2020 Jun 16. PMID: 32542855.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Caruso C, Colantuono S, Tolusso B, et al. Basophil activation and serum IL-5 levels as possible monitor biomarkers in severe eosinophilic asthma patients treated with anti-IL-5 drugs. Allergy. 2021; 76(5): 1569- 1571. doi: https://doi.org/10.1111/all.14643. Epub 2020 Nov 6 PMID: 33099778.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Carlsson CJ, Rasmussen MA, Pedersen SB, et al. Airway immune mediator levels during asthma-like symptoms in young children and their possible role in response to azithromycin. Allergy. 2020; 76(6): 1754- 1764. doi: https://doi.org/10.1111/all.14651. PMID: 33150590.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Zhu T, Zhang X, Chen X, et al. Nasal DNA methylation differentiates severe from nonsevere asthma in African American children. Allergy. 2021; 76(6): 1836- 1845. doi: https://doi.org/10.1111/all.14655. PMID: 33175399; PMCID: PMC8110596.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Jartti T, Liimatainen U, Xepapadaki P, et al. Clinical correlates of rhinovirus infection in preschool asthma. Allergy. 2021; 76(1): 247- 254. doi: https://doi.org/10.1111/all.14479. Epub 2020 Jul 21. PMID: 32621330; PMCID: PMC7818397.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Malmberg LP, Malmström K, Kotaniemi-Syrjänen A, et al. Early bronchial inflammation and remodeling and airway hyperresponsiveness at school age. Allergy. 2020; 75(7): 1765- 1768. doi: https://doi.org/10.1111/all.14198 Epub 2020 Feb 11 PMID: 31984505.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Lammers A, Brinkman P, Te Nijenhuis LH, et al. Increased day-to-day fluctuations in exhaled breath profiles after a rhinovirus challenge in asthma. Allergy. 2021; 76(8): 2488- 2499. doi: https://doi.org/10.1111/all.14811. PMID: 33704785.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Dijk FN, Vijverberg SJ, Hernandez-Pacheco N, et al. IL1RL1 gene variations are associated with asthma exacerbations in children and adolescents using inhaled corticosteroids. Allergy. 2020; 75(4): 984- 989. doi: https://doi.org/10.1111/all.14125. Epub 2019 Dec 17. PMID: 31755552; PMCID: PMC7176513.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Ekstedt S, Tufvesson E, Bjermer L, Kumlien Georén S, Cardell LO. A new role for "eat me" and "don't eat me" markers on neutrophils in asthmatic airway inflammation. Allergy. 2020; 75(6): 1510- 1512. doi: https://doi.org/10.1111/all.14179. Epub 2020 Jan 30 PMID: 31919855.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Shrestha Palikhe N, Wu Y, Konrad E, et al. Th2 cell markers in peripheral blood increase during an acute asthma exacerbation. Allergy. 2021; 76(1): 281- 290. doi: https://doi.org/10.1111/all.14543. Epub 2020 Aug 20 PMID: 32750154.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Hew M, Lee J, Varese N, et al. Epidemic thunderstorm asthma susceptibility from sensitization to ryegrass (Lolium perenne) pollen and major allergen Lol p 5. Allergy. 2020; 75(9): 2369- 2372. doi: https://doi.org/10.1111/all.14319. Epub 2020 May 4. PMID: 32293712; PMCID: PMC7540598.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Lemonnier N, Melén E, Jiang Y, et al. A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy. 2020; 75(12): 3248- 3260. doi: https://doi.org/10.1111/all.14314. Epub 2020 Apr 23 PMID: 32277847.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Hernandez-Pacheco N, Gorenjak M, Jurgec S, et al. Combined analysis of transcriptomic and genetic data for the identification of loci involved in glucocorticosteroid response in asthma. Allergy. 2021; 76(4): 1238- 1243. doi: https://doi.org/10.1111/all.14552. Epub 2020 Sep 16. PMID: 32786158; PMCID: PMC7908891.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Camiolo MJ, Zhou X, Oriss TB, et al. High-dimensional profiling clusters asthma severity by lymphoid and non-lymphoid status. Cell Rep. 2021; 35(2):108974. doi: https://doi.org/10.1016/j.celrep.2021.108974. PMID: 33852838; PMCID: PMC8133874.
CrossrefCASPubMedWeb of Science®Google Scholar
Tyler SR, Chun Y, Ribeiro VM, et al. Merged affinity network association clustering: joint multi-omic/clinical clustering to identify disease endotypes. Cell Rep. 2021; 35(2):108975. doi: https://doi.org/10.1016/j.celrep.2021.108975. PMID: 33852839.
CrossrefCASPubMedWeb of Science®Google Scholar
O'Byrne PM, FitzGerald JM, Bateman ED, et al. Inhaled combined budesonide-formoterol as needed in mild asthma. N Engl J Med. 2018; 378(20): 1865- 1876. doi: https://doi.org/10.1056/NEJMoa1715274. PMID: 29768149.
CrossrefPubMedWeb of Science®Google Scholar
Bateman ED, Reddel HK, O'Byrne PM, et al. As-needed budesonide-formoterol versus maintenance budesonide in mild asthma. N Engl J Med. 2018; 378(20): 1877- 1887. doi: https://doi.org/10.1056/NEJMoa1715275. PMID: 29768147.
CrossrefCASPubMedWeb of Science®Google Scholar
O'Byrne PM, FitzGerald JM, Bateman ED, et al. Effect of a single day of increased as-needed budesonide-formoterol use on short-term risk of severe exacerbations in patients with mild asthma: a post-hoc analysis of the SYGMA 1 study. Lancet Respir Med. 2021; 9(2): 149- 158. doi: https://doi.org/10.1016/S2213-2600(20)30416-1. Epub 2020 Oct 1 PMID: 33010810.
CrossrefPubMedWeb of Science®Google Scholar
Reddel HK, O'Byrne PM, FitzGerald JM, et al. Efficacy and safety of as-needed budesonide-formoterol in adolescents with mild asthma. J Allergy Clin Immunol Pract. 2021; 9(8): 3069. doi: https://doi.org/10.1016/j.jaip.2021.04.016. PMID: 33895362.
CrossrefPubMedWeb of Science®Google Scholar
van Zyl-Smit RN, Krüll M, Gessner C, et al. Once-daily mometasone plus indacaterol versus mometasone or twice-daily fluticasone plus salmeterol in patients with inadequately controlled asthma (PALLADIUM): a randomised, double-blind, triple-dummy, controlled phase 3 study. Lancet Respir Med. 2020; 8(10): 987- 999. doi: https://doi.org/10.1016/S2213-2600(20)30178-8. Epub 2020 Jul 9. PMID: 32653075.
CrossrefPubMedWeb of Science®Google Scholar
Sokolowska M, Rovati GE, Diamant Z, et al. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy. 2021; 76(1): 114- 130. doi: https://doi.org/10.1111/all.14295. PMID: 32279330.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Brightling CE, Gaga M, Inoue H, et al. Effectiveness of fevipiprant in reducing exacerbations in patients with severe asthma (LUSTER-1 and LUSTER-2): two phase 3 randomised controlled trials. Lancet Respir Med. 2021; 9(1): 43- 56. doi: https://doi.org/10.1016/S2213-2600(20)30412-4. Epub 2020 Sep 24 PMID: 32979986.
CrossrefCASPubMedGoogle Scholar
Virchow JC, Kuna P, Paggiaro P, et al. Single inhaler extrafine triple therapy in uncontrolled asthma (TRIMARAN and TRIGGER): two double-blind, parallel-group, randomised, controlled phase 3 trials. Lancet. 2019; 394(10210): 1737- 1749. doi: https://doi.org/10.1016/S0140-6736(19)32215-9. Epub 2019 Sep 30 PMID: 31582314.
CrossrefCASPubMedWeb of Science®Google Scholar
Singh D, Virchow JC, Canonica GW, et al. Determinants of response to inhaled extrafine triple therapy in asthma: analyses of TRIMARAN and TRIGGER. Respir Res. 2020; 21(1): 285. doi: https://doi.org/10.1186/s12931-020-01558-y. PMID: 33121501; PMCID: PMC7597025.
CrossrefCASPubMedWeb of Science®Google Scholar
Lee LA, Bailes Z, Barnes N, et al. Efficacy and safety of once-daily single-inhaler triple therapy (FF/UMEC/VI) versus FF/VI in patients with inadequately controlled asthma (CAPTAIN): a double-blind, randomised, phase 3A trial. Lancet Respir Med. 2021; 9(1): 69- 84. doi: https://doi.org/10.1016/S2213-2600(20)30389-1. Epub 2020 Sep 9. Erratum in: Lancet Respir Med. 2021 Jan 4: PMID: 32918892.
CrossrefCASPubMedWeb of Science®Google Scholar
Lazarus SC, Krishnan JA, King TS, et al. Mometasone or tiotropium in mild asthma with a low sputum eosinophil level. N Engl J Med. 2019; 380(21): 2009- 2019. doi: https://doi.org/10.1056/NEJMoa1814917. Epub 2019 May 19. PMID: 31112384; PMCID: PMC6711475.
CrossrefPubMedWeb of Science®Google Scholar
Corren J, Parnes JR, Wang L, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017; 377(10): 936- 946. doi: https://doi.org/10.1056/NEJMoa1704064. Erratum. In: N Engl J Med. 2019 May 23;380(21):2082. PMID: 28877011.
CrossrefCASPubMedWeb of Science®Google Scholar
Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med. 2021; 384(19): 1800- 1809. doi:https://doi.org/10.1056/NEJMoa2034975. PMID: 33979488.
CrossrefCASPubMedWeb of Science®Google Scholar
Corren J, Karpefors M, Hellqvist Å, Parnes JR, Colice G. Tezepelumab reduces exacerbations across all seasons in patients with severe, uncontrolled asthma: a post hoc analysis of the PATHWAY phase 2b study. J Asthma Allergy. 2021; 14: 1- 11. doi:https://doi.org/10.2147/JAA.S286036. PMID: 33469316; PMCID: PMC7810672.
CrossrefCASPubMedWeb of Science®Google Scholar
Emson C, Corren J, Sałapa K, Hellqvist Å, Parnes JR, Colice G. Efficacy of tezepelumab in patients with severe, uncontrolled asthma with and without nasal polyposis: a post hoc analysis of the phase 2b PATHWAY study. J Asthma Allergy. 2021; 14: 91- 99. doi:https://doi.org/10.2147/JAA.S288260. PMID: 33568920; PMCID: PMC7868291.
CrossrefCASPubMedWeb of Science®Google Scholar
Sverrild A, Hansen S, Hvidtfeldt M, et al. The effect of tezepelumab on airway hyperresponsiveness to mannitol in asthma (UPSTREAM). Eur Respir J. 2021;2101296. doi:https://doi.org/10.1183/13993003.01296-2021. Epub ahead of print. PMID: 34049943.
CrossrefPubMedWeb of Science®Google Scholar
Wechsler ME, Colice G, Griffiths JM, et al. SOURCE: a phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel group trial to evaluate the efficacy and safety of tezepelumab in reducing oral corticosteroid use in adults with oral corticosteroid dependent asthma. Respir Res. 2020; 21(1): 264. doi:https://doi.org/10.1186/s12931-020-01503-z. PMID: 33050928; PMCID: PMC7550846.
CrossrefCASPubMedWeb of Science®Google Scholar
Emson C, Diver S, Chachi L, et al. CASCADE: a phase 2, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the effect of tezepelumab on airway inflammation in patients with uncontrolled asthma. Respir Res. 2020; 21(1): 265. doi:https://doi.org/10.1186/s12931-020-01513-x. PMID: 33050900; PMCID: PMC7550845.
CrossrefCASPubMedWeb of Science®Google Scholar
Menzies-Gow A, Ponnarambil S, Downie J, Bowen K, Hellqvist Å, Colice G. DESTINATION: a phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the long-term safety and tolerability of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res. 2020; 21(1): 279. doi:https://doi.org/10.1186/s12931-020-01541-7. PMID: 33087119; PMCID: PMC7576983.
CrossrefCASPubMedWeb of Science®Google Scholar
Kelsen SG, Agache IO, Soong W, et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: a randomized clinical trial. J Allergy Clin Immunol. 2021; 148(3): 790- 798. doi:https://doi.org/10.1016/j.jaci.2021.03.044. PMID: 33872652.
CrossrefCASPubMedWeb of Science®Google Scholar
Maspero JF, FitzGerald JM, Pavord ID, et al. Dupilumab efficacy in adolescents with uncontrolled, moderate-to-severe asthma: LIBERTY ASTHMA QUEST. Allergy. 2021; 76(8): 2621- 2624. doi:https://doi.org/10.1111/all.14872. PMID: 33905544.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Bourdin A, Papi AA, Corren J, et al. Dupilumab is effective in type 2-high asthma patients receiving high-dose inhaled corticosteroids at baseline. Allergy. 2021; 76(1): 269- 280. doi:https://doi.org/10.1111/all.14611. Epub 2020 Oct 21. PMID: 33010038; PMCID: PMC7820970.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Canonica GW, Harrison TW, Chanez P, et al. Benralizumab improves symptoms of patients with severe, eosinophilic asthma with a diagnosis of nasal polyposis. Allergy. 2021. doi:https://doi.org/10.1111/all.14902. Epub ahead of print. PMID: 33978983.
Wiley Online LibraryWeb of Science®Google Scholar
Campo P, Soto Campos G, Moreira A, et al. Real-life study in non-atopic severe asthma patients achieving disease control by omalizumab treatment. Allergy. 2021; 76(6): 1868- 1872. doi:https://doi.org/10.1111/all.14668. PMID: 33220106.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Kavanagh JE, Hearn AP, d'Ancona G, et al. Benralizumab after sub-optimal response to mepolizumab in severe eosinophilic asthma. Allergy. 2021; 76(6): 1890- 1893. doi:https://doi.org/10.1111/all.14693. PMID: 33300186.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
d'Ancona G, Kavanagh JE, Dhariwal J, et al. Adherence to inhaled corticosteroids and clinical outcomes following a year of benralizumab therapy for severe eosinophilic asthma. Allergy. 2021; 76(7): 2238- 2241. doi:https://doi.org/10.1111/all.14737. PMID: 33432682.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Azzano P, Dufresne É, Poder T, Bégin P. Economic considerations on the usage of biologics in the allergy clinic. Allergy. 2021; 76(1): 191- 209. doi:https://doi.org/10.1111/all.14494. Epub 2020 Sep 6 PMID: 32656802.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Parra-Padilla D, Zakzuk J, Carrasquilla M, et al. Cost-effectiveness of the subcutaneous house dust mite allergen immunotherapy plus pharmacotherapy for allergic asthma: a mathematical model. Allergy. 2021; 76(7): 2229- 2233. doi:https://doi.org/10.1111/all.14723. PMID: 33377199.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Lerner H, Berg C. A comparison of three holistic approaches to health: one health, ecohealth, and planetary health. Front Vet Sci. 2017; 4: 163. doi:https://doi.org/10.3389/fvets.2017.00163. PMID: 29085825; PMCID: PMC5649127.
CrossrefPubMedWeb of Science®Google Scholar
D'Amato G, Chong-Neto HJ, Monge Ortega OP, et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy. 2020; 75(9): 2219- 2228. doi:https://doi.org/10.1111/all.14476. Epub 2020 Aug 5 PMID: 32589303.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Aguilera R, Corringham T, Gershunov A, Leibel S, Benmarhnia T. Fine particles in wildfire smoke and pediatric respiratory health in California. Pediatrics. 2021; 147(4):e2020027128. doi:https://doi.org/10.1542/peds.2020-027128. PMID: 33757996.
CrossrefPubMedWeb of Science®Google Scholar
Prunicki MM, Dant CC, Cao S, et al. Immunologic effects of forest fire exposure show increases in IL-1β and CRP. Allergy. 2020; 75(9): 2356- 2358. doi:https://doi.org/10.1111/all.14251. Epub 2020 Apr 16 PMID: 32112439.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Agache I, Miller R, Gern JE, et al. Emerging concepts and challenges in implementing the exposome paradigm in allergic diseases and asthma: a Practall document. Allergy. 2019; 74(3): 449- 463. doi:https://doi.org/10.1111/all.13690. Epub 2018 Dec 27 PMID: 30515837.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Haahtela T, Alenius H, Lehtimäki J, et al. Immunological resilience and biodiversity for prevention of allergic diseases and asthma. Allergy. 2021. doi:https://doi.org/10.1111/all.14895. Epub ahead of print. PMID: 33959980.
Wiley Online LibraryWeb of Science®Google Scholar
Cavaleiro Rufo J, Paciência I, Hoffimann E, Moreira A, Barros H, Ribeiro AI. The neighbourhood natural environment is associated with asthma in children: a birth cohort study. Allergy. 2021; 76(1): 348- 358. doi:https://doi.org/10.1111/all.14493. Epub 2020 Aug 3 PMID: 32654186.
Wiley Online LibraryPubMedWeb of Science®Google Scholar
Licari A, Votto M, Brambilla I, et al. Allergy and asthma in children and adolescents during the COVID outbreak: what we know and how we could prevent allergy and asthma flares. Allergy. 2020; 75(9): 2402- 2405. https://doi.org/10.1111/all.14369. Epub 2020 May 28. PMID: 32418233; PMCID: PMC7276841.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Matucci A, Caminati M, Vivarelli E, et al. COVID-19 in severe asthmatic patients during ongoing treatment with biologicals targeting type 2 inflammation: results from a multicenter Italian survey. Allergy. 2021; 76(3): 871- 874. doi:https://doi.org/10.1111/all.14516. Epub 2020 Aug 11 PMID: 32716580.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Heffler E, Detoraki A, Contoli M, et al. COVID-19 in Severe Asthma Network in Italy (SANI) patients: clinical features, impact of comorbidities and treatments. Allergy. 2021; 76(3): 887- 892. doi:https://doi.org/10.1111/all.14532. Epub 2020 Aug 20. PMID: 32738147; PMCID: PMC7436509.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Antonicelli L, Tontini C, Manzotti G, et al. Severe asthma in adults does not significantly affect the outcome of COVID-19 disease: results from the Italian Severe Asthma Registry. Allergy. 2021; 76(3): 902- 905. doi:https://doi.org/10.1111/all.14558. Epub 2020 Sep 16. PMID: 32794585; PMCID: PMC7436442.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Kim S, Jung CG, Lee JY, et al. Characterization of asthma and risk factors for delayed SARS-CoV-2 clearance in adult COVID-19 inpatients in Daegu. Allergy. 2021; 76(3): 918- 921. doi:https://doi.org/10.1111/all.14609. Epub 2020 Oct 18. PMID: 33012003; PMCID: PMC7675236.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Peters MC, Sajuthi S, Deford P, et al. COVID-19–related genes in sputum cells in asthma. Relationship to demographic features and corticosteroids. Am J Respir Crit Care Med. 2020; 202(1): 83- 90. doi:https://doi.org/10.1164/rccm.202003-0821OC. Erratum in: Am J Respir Crit Care Med. 2020 Dec 15;202(12):1744-1746. PMID: 32348692; PMCID: PMC7328313.
CrossrefCASPubMedWeb of Science®Google Scholar
Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020; 584(7821): 430- 436. doi:https://doi.org/10.1038/s41586-020-2521-4. Epub 2020 Jul 8 PMID: 32640463.
CrossrefCASPubMedWeb of Science®Google Scholar
Bloom CI, Drake TM, Docherty AB, et al. Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK. Lancet Respir Med. 2021; 9(7): 699- 711. doi:https://doi.org/10.1016/S2213-2600(21)00013-8. PMID: 33676593.
CrossrefCASPubMedWeb of Science®Google Scholar
Choi HG, Wee JH, Kim SY, et al. Association between asthma and clinical mortality/morbidity in COVID-19 patients using clinical epidemiologic data from Korean Disease Control and Prevention. Allergy. 2021; 76(3): 921- 924. doi: https://doi.org/10.1111/all.14675. Epub 2020 Dec 10. PMID: 33249591; PMCID: PMC7753771.
Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Greening NJ, Larsson P, Ljungström E, Siddiqui S, Olin AC. Small droplet emission in exhaled breath during different breathing manoeuvres: implications for clinical lung function testing during COVID-19. Allergy. 2021; 76(3): 915- 917. doi:https://doi.org/10.1111/all.14596. Epub 2020 Oct 6. PMID: 32966612; PMCID: PMC7537081. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Crespo-Lessmann A, Plaza V, Consensus Group. Multidisciplinary consensus on sputum induction biosafety during the COVID-19 pandemic. Allergy. 2021; 76(8): 2407- 2419. doi:https://doi.org/10.1111/all.14697. PMID: 33314245. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Chang C, Zhang L, Dong F, et al. Asthma control, self-management, and healthcare access during the COVID-19 epidemic in Beijing. Allergy. 2021; 76(2): 586- 588. doi: https://doi.org/10.1111/all.14591. Epub 2020 Sep 30. PMID: 32946594; PMCID: PMC7537259. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Eguiluz-Gracia I, van den Berge M, Boccabella C, et al. Real-life impact of COVID-19 pandemic lockdown on the management of pediatric and adult asthma: a survey by the EAACI Asthma Section. Allergy. 2021; 76(9): 2776- 2784. doi:https://doi.org/10.1111/all.14831. PMID: 33772815. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Bousquet J, Jutel M, Akdis CA, et al. ARIA-EAACI statement on asthma and COVID-19 (June 2, 2020). Allergy. 2021; 76: 689- 697. doi:https://doi.org/10.1111/all.14471. Epub 2020 Sep 21. PMID: 32588922; PMCID: PMC7361514. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar
Benlala I, Dournes G, Girodet PO, Benkert T, Laurent F, Berger P. Evaluation of bronchial wall thickness in asthma using magnetic resonance imaging. Eur Respir J. 2021; 2100329. doi:https://doi.org/10.1183/13993003.00329-2021. Epub ahead of print. PMID: 34049945. CrossrefPubMedGoogle Scholar
Derechos de autor 2024 Carlos Enrique Arenas Molina, Daniela Garzón Monsalve, Martin Vergara Garcia, Laura Isabel Pabón Pérez, Edinson Rafael Zapata Campo, Juan Nicolas Layton , Daniel Mutis , Maritza Johanna Camacho Santamaria , Laura Lisseth Hernández Jaramillo
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.