Papel de E6 de los VPH en el Desarrollo de Cáncer Cervical
Resumen
El cáncer de cérvix (CaCU) es una de las principales causas de muerte por cáncer femenino en todo el mundo. La infección por virus del papiloma humano (VPH) es uno de los principales factores de riesgo, la infección por el VPH-16 representa más de la mitad de todos los casos de CaCU en todo el mundo. El alto potencial oncogénico del VPH-16 es principalmente por la expresión de la proteína viral E6, quien se caracteriza por 2 dedos de zinc, uno en cada extremo. Esta oncoproteína es responsable de la inestabilidad genómica, la interrupción del ciclo celular, inhibición de la respuesta inmune, la proliferación celular, la inmortalización, y la transformación maligna de las células infectadas por VPH. Todos los VPH en su genoma tienen codificada a E6, las características de E6 son dadas por su secuencia nucleotidica, lo que se relaciona con su potencial oncogénico diferencial entre genotipos y variantes del VPH. El objetivo de este estudio fue analizar a la oncoproteina E6 del VPH para comparar sus características y asociarlas con la capacidad de E6 para desarrollar CaCU. La afinidad por sus proteínas blanco, su estabilidad, y su tasa de transcripción se relaciona con su potencial oncogénico.
Descargas
Citas
Aksoy, P., Gottschalk, E. Y. y Meneses, P. I. (2017). HPV entry into cells, Mutation research. Reviews in mutation research, 772, 13–22.
Araldi, R. P., Sant’Ana, T. A., Módolo, D. G., de Melo, T. C., Spadacci-Morena, D. D., Stocco, R. C. et al. (2018). The human papillomavirus (HPV)-related cancer biology: An overview, Biomedicine and Pharmacotherapy, 106, 1537–1556.
Banks, L., Pim, D. y Thomas, M. (2012). Human tumour viruses and the deregulation of cell polarity in cancer, Nature Reviews Cancer, 12, 877–886.
Barbieri, D. et al. (2012). Comparison of HPV sign Genotyping Test with INNO-LiPA HPV Genotyping Extra assay on histologic and cytologic cervical specimens, Diagnostic Microbiology and Infectious Disease, 74(1), 43–48.
Bechtold, V., Beard, P. y Raj, K. (2003). Human Papillomavirus Type 16 E2 Protein Has No Effect on Transcription from Episomal Viral DNA, Journal of Virology, 77(3), 2021–2028.
Bernard, H.-U. (2002). Gene expression of genital human papillomaviruses and considerations on potential antiviral approaches, Antiviral therapy, 7(4), 219–237.
Bernard, H.-U. et al. (2010). Classification of Papillomaviruses (PVs) Based on 189 PV Types and Proposal of Taxonomic Amendments, Virology, 401(1), 70–79.
Betancort-Santana C. (2021) Virus del papiloma humano y cáncer de cuello uterino. Tesis doctoral no publicada. San Cristóbal de La Laguna. Facultad de Farmacia universidad la laguna.
Bhatla, N., Aoki, D., Sharma, D. N., & Sankaranarayanan, R. (2018). Cancer of the cervix uteri. International journal of gynecology & obstetrics, 143, 22-36.
Bohl, J. et al. (2000). Competitive Binding to a Charged Leucine Motif Represses Transformation by a Papillomavirus E6 Oncoprotein, Virology, 270(1), 163–170.
Brimer, N., Drews, C. M. y Vande Pol, S. B. (2017). Association of papillomavirus E6 proteins with either MAML1 or E6AP clusters E6 proteins by structure, function , and evolutionary relatedness, PLOS Pathogens, 13(12), e1006781.
Brimer, N., Lyons, C., Wallberg, A. E. and Vande Pol, S. B. (2012). Cutaneous Papillomavirus E6 oncoproteins associate with MAML1 to repres transactivation and NOTCH signaling, Oncogene, 31(43), 4639–4646.
Burk, R. D., Chen, Z. y Van Doorslaer, K. (2009). Human Papillomaviruses : Genetic Basis of Carcinogenicity”, Public Health Genomics, 12(5–6), 281–290.
Burk, R. D., Harari, A. y Chen, Z. (2013). Human papillomavirus genome variants, Virology, 445(1–2), 232–243.
Chen, J. J. et al. (1998). Identification of an Helical Motif Sufficient for Association with Papillomavirus E6 *, The Journal of Biological Chemistry, 273(22), 13537– 13544.
Conrady, M. C. et al. (2021). Structure of High-Risk Papillomavirus 31 E6 Oncogenic Protein and Characterization of E6 / E6AP / p53 Complex Formation”, Journal of Virology, 95(2), e00730-20.
Cordero-Martínez, J. y García-Pimentel, M. (2015). Citologías alteradas y diferentes factores de riesgo para el cáncer cervicouterino”, Revista de Ciencias Médicas. La Habana, 21(2), 357–370.
Cornet, I., Gheit, T., Franceschi, S., Vignat, J., Burk, R. D. and Sylla, B. S. (2012). Human Papillomavirus Type 16 Genetic Variants: Phylogeny and classification Based on E6 and LCR. Journal of Virology, 86 (12), 6855– 6860.
de Mello, I. M. (2009). Zona de transformación, Archivos Médicos de Actualización en Tracto Genital Inferior (AMATGI), 1(1), 24–26.
de Sanjosé, S., Brotons, M. y Pavón, M. A. (2018). The natural history of human papillomavirus infection, Best Practice and Research: Clinical Obstetrics and Gynaecology, 47, 2–13.
de Villiers, E. et al. (2004). Classification of papillomaviruses, Virology, 324(1), 17– 27.
Doorbar, J. et al. (2012). The Biology and Life-Cycle of Human Papillomaviruses, Vaccine, 30, F55–F70.
Egawa, N. et al. (2015). Human papillomaviruses; Epithelial tropisms, and the development of neoplasia, Viruses, 7(7), 3863–3890.
Egawa, N. y Doorbar, J. (2017). The low-risk papillomaviruses, Virus Research, 231, 119–127.
Evans, M. F. et al. (2014). HPV E6/E7 RNA In Situ hybridization signal patterns as biomarkers of three-tier cervical intraepithelial neoplasia grade”, PLoS ONE, 9(3), e91142.
Fang, L. et al. (2020). Genetic variability , phylogeny and functional implication of the long control region in human papillomavirus type 16 , 18 and 58 in Chengdu , China, Virology Journal, 17(1), 106.
Fanning, A. S. y Anderson, J. M. (1999). PDZ domains : fundamental building blocks in the organization of protein complexes at the plasma membrane, The Journal of Clinical Investigation, 103(6), 767–772.
Fernandes Durão, A. T. (2020). Gammapatías monoclonales: de la colección al diagnóstico de laboratorio.Tesis doctoral no publicada.Lisboa. Nueva Universidad de Lisboa.
Fernández Pérez, M. D., Regueira Betancourt, S. M. & Torres Fernández, M., 2016. Preventable risk factors in some types of Cancer. Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta., 41(11).
Flores Hernández, J. L., García Arteaga, S., Flores Barrios, K. y Vargas Hernández, V. M., 2019. Factores de riesgo para lesiones precursoras de cáncer de cuello de útero. revista de enfermedades del tracto genital inferior, 12(1), 6-11.
Gallegos-Bolaños, J. et al. (2017). High prevalence of co-infection between human papillomavirus (HPV) 51 and 52 in Mexican population”, BMC cancer, 17((1): 531), 1–8.
Ganti, K. et al. (2015). The human papillomavirus E6 PDZ binding motif: From life cycle to malignancy, Viruses, 7(7), 3530–3551.
Gheit, T. (2019). Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Frontiers in Oncology. 9(335). 2-5.
Glaunsinger, B. A. et al. (2000). Interaction of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 proteinn, Oncogene, 19(46), 5270– 5280.
Grassmann, K. et al. (1996). Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA, Journal of Virology, 70(4), 2339–2349.
Guan, P. et al. (2012). Human papillomavirus types in 115,789 HPV-positive women: A meta-analysis from cervical infection to cancer, International Journal of Cancer, 131(10), 2349–2359.
Guerra, F. et al. (2018). Moléculas de adhesión y proteínas oncogénicas de virus de papiloma humano en la progresión de cáncer de cuello uterino”, Revista de la Asociación Bioquímica Argentina, 82(2), 30–35.
Hamid, N. A., Brown, C. y Gaston, K. (2009). The regulation of cell proliferation by the papillomavirus early proteins”, Cellular and Molecular Life Sciences, 66(10), pp. 1700–1717.
Harden, M. E. and Mungerb K. (2017). Human Papillomavirus Molecular Biology. Mutat Res Rev Mutat Res. 2017;772:3–12.
Herfs, M. et al. (2012). A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer, Proceedings of the National Academy of Sciences of the United States of America, 109(26), pp. 10516–10521.
Howie, H. L., Katzenellenbogen, R. A. y Galloway, D. A. (2009). Papillomavirus E6 proteins, Virology, 384(2), 324–334.
Hsu, C.-H. et al. (2012). The HPV E6 oncoprotein targets histone methyltransf for modulating specific gene transcription, Oncogene, 31(18), 2335–2349.
Huertas-Salgado, A., Martín-Gómez, D. C., Moreno, P., Murillo, R., Bravo, M. M., Villa, L. and Milano, M. (2011). E6 molecular variants of human papillomavirus (HPV) type 16: An updated and unified criterion for clustering and nomenclature. Virology, 410 (1), 201-212.
Huibregtse, J. M., Scheffner, M. y Howleyt, P. M. (1993). Localization of the E6-AP Regions That Direct Human Papillomavirus E6 Binding , Association with p53 , and Ubiquitination of Associated Proteins, Molecular and Cellular Biology, 13(8), 4918–4927.
Illades-Aguiar, B. et al. (2010). Prevalence and distribution of human papillomavirus types in cervical cancer, squamous intraepithelial lesions, and with no intraepithelial lesions in women from Southern Mexico, Gynecologic Oncology, 117(2), 291–296.
Ishidate, T. et al. (2000). The APC-hDLG complex negatively regulates cell cycle progression from the G0 / G1 to S phase”, Oncogene, 19, 365–372.
James, C. D. y Roberts, S. (2016). Viral Interactions with PDZ Domain-Containing Proteins— An Oncogenic Trait ?, Pathogens, 5((1) 8), 1–22.
Javier, R. T. y Rice, A. P. (2011). MINIREVIEW Emerging Theme : Cellular PDZ Proteins as Common Targets of Pathogenic Viruses , Journal of Virology, 85(22), 11544–11556.
Jendoubi-ferchichi, M. et al. (2018). Phylogeny and Classification of Human Papillomavirus ( HPV ) 16 and HPV18 Variants Based on E6 and L1 genes in Tunisian Women with Cervical Lesions, Asian Pacific Journal of Cancer Prevention, 19(12), 3361–3366.
Jiang, P. y Yue, Y. (2014). Human papillomavirus oncoproteins and apoptosis (Review). Experimental and therapeutic medicine, 7(1), 3–7.
Kines, R. C. et al. (2009). The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding, Proceedings of the National Academy of Sciences of the United States of America (PNAS), 106(48), 20458–20463.
Kiyono, T. et al. (1997). Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein, Proceedings of the National Academy of Sciences of the United States of America, 94(21), 11612–11616.
Kranjec, C. y Doorbar, J. (2016). Human papillomavirus infection and induction of neoplasia: a matter of fitness, Current Opinion in Virology, 20, 1–8.
Laprise, P., Viel, A. y Rivard, N. (2004). Human Homolog of Disc-large Is Required for Adherens Junction Assembly and Differentiation of Human Intestinal Epithelial Cells*, The Journal of Biological Chemistry, 279(11), 10157–10166.
Lee, H. y Zheng, J. J. (2010). PDZ domains and their binding partners : structure, specificity , and modification, Cell Communication and Signaling, 8(1), 1–18.
Lee, S. S., Weiss, R. S. y Javier, R. T. (1997). Binding of human virus oncoproteins to hDlg SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein, Proceedings of the National Academy of Sciences of the United States of America, 94(13), 6670–6675.
Leonard, S. M. et al. (2012). Oncogenic Human Papillomavirus imposes an instructive pattern of DNA methylation chanhes which parallel the natural history of cervical HPV infection in young women, Carcinogenesis, 33(7), 1286–1293.
López-Saavedra, A. y Lizano-Soberón, M. (2006). Cáncer cérvicouterino y el virus del papiloma humano: La historia que no termina, en Cancerología 1. México, D. F., 31–55.
Mantovani, F., Massimi, P. y Banks, L. (2001). Proteasome-mediated regulation of the hDlg tumour suppressor protein”, Journal of cell science, 104(23), 4285–4292.
Palacios Ibarra, Y. S., & Ramírez Chávez , M. A. (2024). Desarrollo de Competencias Socio-Emocionales: El Camino hacia una Educación Integral. Estudios Y Perspectivas Revista Científica Y Académica , 4(2), 194–210. https://doi.org/10.61384/r.c.a.v4i2.208
Montes Reyna , W. E., Humanante Carpio, M. L., Delgado Rodríguez, M. C., & Iñiguez Apolo, L. M. (2024). Uso de los Recursos Educativos Abiertos y Tecnologías Educativas (EdTech) en la Educación Superior . Revista Científica De Salud Y Desarrollo Humano, 5(2), 56–68. https://doi.org/10.61368/r.s.d.h.v5i2.121
Kantun González, L. J. del J., & Galiano Gil, J. M. (2024). Fascitis necrotizante Un análisis clínico a través de imágenes en un caso particular . Emergentes - Revista Científica, 4(1), 241–255. https://doi.org/10.60112/erc.v4i1.106
Batista Azevedo, M. A., & Cavalcante Serpa, N. (2023). Poder e o Empoderamento Feminino. Revista Veritas De Difusão Científica, 4(2), 1–23. https://doi.org/10.61616/rvdc.v4i2.43
Martínez, O., Aranda , R., Barreto , E., Fanego , J., Fernández , A., López , J., Medina , J., Meza , M., Muñoz , D., & Urbieta , J. (2024). Los tipos de discriminación laboral en las ciudades de Capiatá y San Lorenzo. Arandu UTIC, 11(1), 77–95. Recuperado a partir de https://www.uticvirtual.edu.py/revista.ojs/index.php/revistas/article/view/179
v, H., & Quispe Coca, R. A. (2024). Tecno Bio Gas. Horizonte Académico, 4(4), 17–23. Recuperado a partir de https://horizonteacademico.org/index.php/horizonte/article/view/14
Da Silva Santos , F., & López Vargas , R. (2020). Efecto del Estrés en la Función Inmune en Pacientes con Enfermedades Autoinmunes: una Revisión de Estudios Latinoamericanos. Revista Científica De Salud Y Desarrollo Humano, 1(1), 46–59. https://doi.org/10.61368/r.s.d.h.v1i1.9
Mesplède, T. Gagnon, D., Bergeron-Labrecque, F., Azar, I., Sénéchal, H., Coutlée, F. et al. (2014) p53 Degradation Activity, Expression, and Subcellular Localization of E6 Proteins from 29 Human Papillomavirus Genotypes. Journal of Virology, 86(1) 95-106.
Meyers, J. M., Spangle, J. M. y Munger, K. (2013). The Human Papillomavirus Type 8 E6 Protein Interferes with NOTCH Activation during Keratinocyte Differentiation, Journal of Virology, 87(8), 4762–4767.
Mirabello, L. et al. (2016). HPV16 Sublineage Associations with Histology-Specific Cancer Risk Using HPV Whole-Genome Sequences in 3200 Women, Journal of the National Cancer Institute, 108(9), djw100.
Montero-Lora, Y. Ramón Jiménez, R., Valverde Ramón, C., Escobedo Batista, F. E. and Hodelín Pozo, E. (2018). Main risk factors in the emergence of cervical cancer. MEDISAN,.22(5), 531-536.
Moody, C. A. (2017). Mechanisms by which HPV induces a replication competent environment in differentiating keratinocytes. Viruses, 9(9), 261.
Mosmann, J. P. et al. (2015). Mutation Detection of E6 and LCR Genes from HPV 16 Associated with Carcinogenesis, Asian Pacific journal of cancer prevention, 16(3), 1151–1157.
Muñoz, N. et al. (2003). Epidemiologic Classification of Human Papillomavirus Types Associated with Cervical Cancer, The New England Journal of Medicine, 348(6), 518–527.
Nakagawa, S. y Huibregtse, J. M. (2000). Human Scribble ( Vartul ) Is Targeted for Ubiquitin-Mediated Degradation by the High-Risk Papillomavirus E6 Proteins and the E6AP Ubiquitin-Protein Ligase, Molecular and cellular biology, 20(21), 8244–8253.
Nakahara, T. et al. (2005). Human Papillomavirus Type 16 E1 ∧ E4 Contributes to Multiple Facets of he Papillomavirus Life Cycle, Journal of Virology, 79(20), 13150–13165.
Ndiaye, C. et al. (2014). HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: A systematic review and meta-analysis, The Lancet Oncology, 15(12), 1319–1331.
Niccoli, S., Abraham, S., Richard, C. & Ingeborg, Z. (2012). The Asian-American E6 Variant Protein of Human Papillomavirus 16 Alone Is Sufficient To Promote Immortalization, Transformation, and Migration of Primary Human Foreskin Keratinocytes. journal of vorology, 86(22), 12384-96.
Nominé, Y., Ristriani, T., Laurent, C., Lefévre, J. F., Weiss, E. y Trave, G. (2001a). A strategy for optimizing the monodispersity of fusion proteins : application to purification of recombinant HPV E6 oncoprotein, Protein Engineering, 14(4), 297–305.
Nominé, Y., Ristriani, T., Laurent, C., Lefévre, J. F., Weiss, E. y Trave, G. (2001b). Formation of Soluble Inclusion Bodies by HPV E6 Oncoprotein Fused to Maltose-Binding Protein, Protein Expression and Purification, 32(1), 22–32.
Oliva, C. et al. (2012). Role of the MAGUK Protein Family in Synapse Formation and Function, 72(1), 57–72.
Pande, S. et al. (2008). Human Papillomavirus Type 16 Variant Analysis of E6 , E7 , and L1 Genes and Long Control Region in Biopsy Samples from Cervical Cancer Patients in North India, Journal of clinical microbiology, 46(3), 1060–1066.
Peña-López, B. O., Romero-Bohórquez, A. R. y Rincón-orozco, B. (2021). Importancia de los interferones tipo I en la respuesta inmune antiviral contra el Virus del Papiloma Humano, Salud UIS, 53.
Pérez-Pérez, N. et al. (2020). Prevalencia de los genotipos de HPV en lesiones pre invasoras de alto grado de malignidad y cáncer de cuello uterino en la población del Hospital de Clínicas. Montevideo-Uruguay, Anales de la Facultad de Medicina, 7(2), e202.
Pientong, C., Wongwarissara, P., Ekalaksananan, T., Swangphon, P., Kleebkaow, P., Kongyingyoes, B., & Suthipintawong, C. (2013). Association of human papillomavirus type 16 long control region mutation and cervical cancer. Virology journal, 10, 1-9.
Piña-Napal, J. C. et al. (2016). Molecular identification of human papilloma virus genotypes in patients with cervical cancer”, Revista Archivo Médico de Camagüey, 20(3), 288–298.
Ramírez-Pineda, A. T. et al. (2019). Filogenia y oncogénesis del virus del papiloma humano: una aproximación translacional al descubrimiento de biomarcadores para la detección de lesiones precancerosas de cérvix, Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(168), 351–365.
Reuver, S. M. y Garner, C. C. (1998). E-cadherin mediated cell adhesion recruits SAP97 into the cortical cytoskeleton, Journal of Cell Science, 111(8), 1071–1080.
Ristriani, T. et al. (2001). Specific Recognition of Four-way DNA Junctions by the C- terminal Zinc-binding Domain of HPV Oncoprotein E6, Journal of Molecular Biology, 305(4), 729–739.
Rodríguez-Ruiz, H. A. et al. (2019). In silico prediction of structural changes in human papillomavirus type 16 (HPV16) E6 oncoprotein and its variants, BMC Molecular and Cell Biology, 20(1), 1–12.
Román Collazo, C. et al. (2019). Virus de Papiloma Humano, cáncer cérvico uterino y modificaciones epigenéticas, Revista Estudiantil CEUS, 1(2), 15–22.
Roman, A. y Munger, K. (2013). The papillomavirus E7 proteins, Virology, 445, 138–168.
Ronco, L. V. et al. (1998). Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity, Genes & Development, 12(13), 2061–2072.
Schiffman, M. et al. (2016). Carcinogenic human papillomavirus infection, Nature Reviews Disease Primers, 2, 16086.
Sendagorta-cudós, E., Burgos-cibrián, J. y Rodríguez-Iglesias, M. (2019). Infecciones genitales por el virus del papiloma humano, Enfermedades Infecciosas y Microbiología Clínica, 37(5), 324–334.
Serrano Cogollor, L. & López Díaz, A. C., 2017. Módulo 1. Historia natural del VPH. Documento inédito. Madrid.
Sotelo, N. S. et al. (2012). Cellular Biochemistry, Journal of cellular biochemistry, 113(8), 2661–2670.
Suarez, I. y Trave, G. (2018). Structural Insights in Multifunctional Papillomavirus Oncoproteins, Viruses, 10((1): 37), 1–22.
Subbaiah, V. K. et al. (2011). PDZ domains : the building blocks regulating tumorigenesis, The Biochemical journal, 439(2), 195–205.
Sung, H. et al. (2021). Global Cancer Statistics 2020 : GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA: A Cancer Journal for Clinicians, 71(3), 209–249.
Tan, M. J. A. et al. (2012). Cutaneous β -human papillomavirus E6 proteins bind Mastermind-like coactivators and repress Notch signaling, Proceedings of the National Academy of Sciences, 109(23), E1473–E1480.
Tonikian, R. et al. (2008). A specificity map for the PDZ domain family, PLoS Biology, 6(9), 2043–2059.
Toro-Montoya, A. I., & Tapia-Vela, L. J. (2023). Virus del papiloma humano (VPH) y cáncer. Medicina & laboratório, 25(2), 467-483.
Valiente, M. et al. (2005). Binding of PTEN to Specific PDZ Domains Contributes to PTEN Protein Stability and Phosphorylation by Microtubule-associated Serine / Threonine Kinases *, The Journal of Biological Chemistry, 280(32), 28936–28943.
Vande Pol, S. B. y Klingelhutz, A. J. (2013). Papillomavirus E6 oncoproteins, Virology, 445, 115–137.
Vande Pol, S. B., Brown, M. C. y Turner, C. E. (1998). Association of Bovine Papillomavirus Type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif, Oncogene, 16(1), 43–52.
Veríssimo-Fernandes, J. et al. (2009). Prevalence of HPV infection by cervical cytologic status in Brazil, International Journal of Gynecology and Obstetrics, 105(1), 21–24.
Vonsky, M. et al. (2019). Carcinogenesis Associated with Human Papillomavirus Infection. Mechanisms and Potential for Immunotherapy, Biochemistry (Moscow), 84(7), 782–799.
Wawrzyniak, Anna Maria Kashyap, R. y Zimmermann, P. (2013). Phosphoinositides and PDZ domain scaffolds, Advances in experimental medicine and biology, 991, 41–57.
White, E. A. et al. (2012). Comprehensive Analysis of Host Cellular Interactions with Human Papillomavirus E6 Proteins Identifies New E6 Binding Partners and Reflects Viral Diversity, Journal of Virology, 86(24), 13174–13186.
Xi, J. et al. (2017). Genetic variability and functional implication of the long control region in HPV-16 variants in Southwest China, PLOS ONE, 12(8), e0182388.
Yeung, C. L. A. et al. (2010). HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53, ONCOLOGY REPORTS, 24(6), 1599–1604.
Zanier, K. et al. (2012). Solution structure analysis of the HPV16 E6 oncoprotein reveals a self-association mechanism required for E6-mediated degradation of p53, Structure, 20(4), 604–617.
Zheng, Z.-M. y Baker, C. C. (2006). Papillomavirus genome structure, expression, and post-transcriptional regulation, Frontiers in bioscience : a journal and virtual library, 11(3), 2286–2302.
Derechos de autor 2024 Soledad Hidalgo-Jaimes , Eduardo Luis Lomelí-Merino, Dorisel Rodríguez-García, Miguel Ángel Mendoza-Catalán , Napoleón Navarro-Tito , Eric Genaro Salmerón-Bárcenas , Berenice Illades-Aguiar, José Ángel Cahua-Pablo, César Sotelo-Leyva , Ana Elvira Zacapala-Gómez
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.