Production of Biomass and Lipid Yields of Chlorella sp. Cultivated in Autotrophic and Mixotrophic Media

Palabras clave: chlorella, biomass, lipid yields, bioremediation, mixotrophy medium

Resumen

In this work, we analyze the biomass and lipid yields of Chlorella sp., when it grows in synthetic wastewater with and without nitrogen limitation and in both cases, adding glucose to both medium, autotrophic and mixotrophic. Our results confirm that it is possible to expand their possibilities of use, which range from their use for the bioremediation of bodies of water to obtaining various biofuels due to their high content of lipids and carbohydrates. It was identified that both the biomass and lipids were higher in the media with mixotrophy with 535.71 mg L-1 and 244.60 mg L-1, respectively. Similarly, the importance of nitrogen present in the growth medium was recognized as a determining variable for the accumulation of lipids in the species, while it is concluded that the use of Chlorella sp. eliminates a significant percentage of nitrogen and phosphorus present in wastewater, thereby reducing nutrient contamination. The nutrient stress to which the microalgae were subjected allowed a greater accumulation of lipids in the cells, which leads to the conclusion that in a large-scale study, Chlorella sp. It could be used as a raw material to obtain oils and their subsequent transformation into biodiesel.

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] M. A. Mohammad Mirzaie, M. Kalbasi, S. M. Mousavi y B. Ghobadian, «Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium,» Preparative Biochemistry & Biotechnology , vol. 46, nº 2, pp. 150-156, 2016. DOI: 10.1080/10826068.2014.995812
[2] A. M. Ardila Alvarez, Y. Lopez Matos, M. Vasquez Caceres, A. Gonzalez Delgado y A. Barajas Solano, «Obtaining lipids and carbohydrates from microalgae via design of selective culture media,» Tecno Lógicas, vol. 20, nº 38, pp. 83-94, 2017. ISSN 0123-7799
[3] G. Salas Herrera, A. Benavides Mendoza, A. Zermeño Gonzalez , A. Orta Davila y F. D. J. Sanchez Perez, «Evaluation of microalgae for the production of economically useful biomass using produced water.,» Revista Mexicana de Ciencias Agrícolas, vol. 12, nº 12, pp. 2423-2435, 2015. ISSN 2007-0934
[4] G. Acien, A. Reis, G. Torzillo y E. Molina Grima, Photobioreactors for the production of microalgae, Almería, España: Latest Edition, 2017. ISBN 9780081010235, https://doi.org/10.1016/B978-0-08-101023-5.00001-7.
[5] S. Banerjee y S. Ramaswany, «Dynamic process model and economic analysis of microalgae cultivation in open raceway ponds.,» Algal Research, vol. 26, pp. 330-340, 2017. ISSN 2211-9264, https://doi.org/10.1016/j.algal.2017.08.011.
[6] P. Rodriguez Ramos, Y. Sanchez Miranda, L. Zumalacarregui de Cardenas, O. Perez Ones, A. Hernadez Milan, P. Echeveste de Miguel y A. T. Lombardi, «Biomass production from Chlorella vulgaris microalgae in bubble column photo-bioreactors,» Afinidad IQS, vol. 73, nº 574, 2016. ISSN 0001-9704
[7] Y. Liang, N. Sarkany y Y. Cui, «Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions,» Biotechnol , vol. 31, pp. 1043-1049, 2009. https://doi.org/10.1007/s10529-009-9975-7
[8] L. L. Estévez Landazábal, A. F. Barajas Solano, C. Barajas Ferreira y V. Kafarov, «Improvement of lipid productivity on Chlorella Vulgaris using waste glycerol and sodium acetate.,» Ciencia, Tecnología y Futuro, vol. 5, nº 2, pp. 113-126, 2013. https://doi.org/10.29047/01225383.203
[9] R. A. E. Fatah Hamouda, N. Mohamed Sorour y D. S. Yeheia, «Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions,» International Biodeterioration & Biodegradation, vol. 112, pp. 128-134, 2016. https://doi.org/10.1016/j.ibiod.2016.05.001
[10] A. M. Silva Benavides, «Evaluation of agricultural fertilizers on the productivity of microalgae Chlorella sorokiniana.,» Agronomía mesoamericana, vol. 27, nº 2, pp. 265-275, 2016. https://doi.org/10.15517/AM.V27I2.24361.
[11] G. Rodríguez Castillo, C. Amarelo Santos, M. Guerrero Barrantes y A. Delgado dos Reis, «Study of morphological and phisiological characteristics of Chlorella protothecoides oriented to lipid production for biofuel.,» Tecnología en marcha, vol. 29, nº 3, pp. 3-11, 2016. http://dx.doi.org/10.18845/tm.v29i6.2897.
[12] T. S. Lin y J. Y. Wu, «Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition.,» Bioresource Technology, vol. 184, pp. 100-107, 2015. https://doi.org/10.1016/j.biortech.2014.11.005
[13] H. . A. Hasan, M. . H. Muhamad, B. Ji, N. . A. Nazairi, . K. . W. Jiat, S. . I. S. W. A. Sim y A. . F. M. S. Poh, «Revolutionizing wastewater treatment with microalgae: Unveiling resource recovery, mechanisms, challenges, and future possibilities.,» Ecological Engineering, vol. 197, p. 107117, 2023. https://doi.org/10.1016/j.ecoleng.2023.107117
[14] M. Ortiz Moreno, C. Cortés Castillo, J. Sánchez Villarraga, J. Padilla y A. Otero Paternina, «Evaluating microalgae Chlorella sorokiniana growth in different culture mediums in autotrophic and mixotrophic conditions,» ORINOQUIA, vol. 16, nº 1, pp. 11-20, 2012. ISSN 0121-3709
[15] B. O. Arredondo Vega y D. Voltolina, Métodos y Herramientas Analíticas en la Evaluación de la Biomasa Microalgal., Baja California Sur: CIB, 2015. ISBN 978-607-7634-21-8
[16] X. Liu, K. Wang, J. Zhang, J. Wang, J. Wu y F. Peng, «Ammonium removal potential and its conversion pathways by free and immobilized Scenedesmus obliquus from wastewater,» Bioresource Technology, vol. 283, pp. 184-190, 2019. https://doi.org/10.1016/j.biortech.2019.03.038
[17] X. Lang, Z. Liu, M. Xu, L. Xie y R. Li, «Effects of glucose on photosynthesis and growth of Chlorella sp. HN08 cells,» Wei Sheng Wu Xue Bao, vol. 57, nº 4, pp. 550-559, 2017. ISSN/ISBN: 0001-6209
[18] P. Santhakumaran, S. . K. Kookal, L. Mathew y J. G. Ray, «Bioprospecting of Three Rapid-Growing Freshwater Green Algae, Promising Biomass for Biodiesel Production,» BioEnergy Research, vol. 12, pp. 680-693, 2019. https://doi.org/10.1007/s12155-019-09990-9
[19] M. Amin y P. Chetpattananondh, «Enhanced Lipid Recovery from Marine Chlorella Sp.,» BioEnergy Research, vol. 12, pp. 665-679, 2019. https://doi.org/10.1007/s12155-019-09986-5
[20] A. Ruíz Marín, L. Mendoza Espinosa y T. Stephenson, «Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater.,» Bioresource Technology, vol. 101, nº 1, pp. 58-64, 2010.
https://doi.org/10.1007/s12155-019-09986-5
[21] A. Rosales Quintero y R. Meza Gordillo, «Efecto del fotoperiodo y privación de nutrientes en la producción de lípidos, clorofila y proteína en la microalga Chlorella vulgaris,» Chetumal, Quintana Roo, México., 2018.
http://repositorio.digital.tuxtla.tecnm.mx/xmlui/handle/123456789/3057
[22] M. Ortiz Moreno, C. Cortés Castillo, J. Sánchez Villarraga y J. Padilla, «Evaluating microalgae Chlorella sorokiniana growth in different culture mediums in autotrophic and mixotrophic conditions,» ORINOQUIA, vol. 14, pp. 230-240, 2012. ISSN 0121-3709.
[23] O. Castillo, S. Torres Badajoz, C. Núñez Colín, V. Peña Caballero, C. Herrera Méndez y J. Rodríguez Núñez, «Biodiesel production from microalgae: progress and biotechnological prospects.,» Hidrobiológica, vol. 27, nº 3, pp. 337-352, 2017. ISSN 0188-8897.
[24] X. Li y H. X. Xu, «Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors,» Biotechnol Bioeng, vol. 98, pp. 764-771, 2007. DOI: 10.1002/bit.21489
[25] B. C. Freitas Bastos de , A. P. Cassuriaga Aguiar, M. Morais Greque De y J. A. Costa, «Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella minutissima,» Bioresource Technology, vol. 238, pp. 248-253, 2017. https://doi.org/10.1016/j.biortech.2017.04.031
[26] M. Izadpanah, R. Gheshlaghi, M. Akhavan y A. Elkamel, «Effect of light spectrum on isolation of microalgae from urban wastewater,» Algal Research, vol. 29, pp. 154-158, 2018. https://doi.org/10.1016/j.algal.2017.11.029
[27] A. Baran Sozmen, A. Atá y B. Övez, «Optimization of the algal species Chlorella miniata growth: Mathematical modelling and evaluation of temperature and light intensity effects,» Biocatalysis and Agricultural Biotechnology, vol. 2022, p. 102239, 2022. https://doi.org/10.1016/j.bcab.2021.102239
[28] A. Baidya, T. Akter, M. Rabiul Islam, A. Azad Shah, M. Amzad Hossain, M. Abdus Salam y S. Indra Paul, «Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea,» Heliyon, vol. 7, p. e08525, 2021. https://doi.org/10.1016/j.heliyon.2021.e08525
[29] P. Feng, Z. Xu, L. Qin, M. Asraful Alam, Z. Wang y S. Zhu, «Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of Chlorella sp. GN1 outdoors,» Bioresource Technology, vol. 301, p. 122762, 2020. https://doi.org/10.1016/j.biortech.2020.122762
[30] A. Gulghe, F. A. Ansari, P. Singh y F. Bux, «Heterotrophic cultivation of microalgae using aquaculture wastewater: A biorefinery concept for biomass production and nutrient remediation.,» Ecological Engineering, vol. 99, pp. 47-53, 2017. https://doi.org/10.1016/j.ecoleng.2016.11.013
[31] R. Ramos y R. Pizarro, «Growth and bioremediation capacity of Chlorella vulgaris (Trebouxiophycea, Chlorophyta) cultivated in wastewater generated in the fish farming of the yellowtail amberjack Seriola lalandi,» Biología Marina y Oceanografía, vol. 53, nº 1, pp. 75-86, 2018. http://dx.doi.org/10.4067/S0718-19572018000100075.
[32] C. C. García Gozalbes, Z. Arbib y J. A. P. Vargas Machuca, «Growth Kinetics and Nutrient Uptake of Microalgae in Urban Wastewaters with Different Treatment Levels.,» Water Technology and Sciences, vol. 6, nº 1, pp. 49-68, 2015. http://hdl.handle.net/10498/19683
Publicado
2024-10-30
Cómo citar
Díaz Santiago, K. E., López de Paz , P., Rosales Quintero, A., Espinosa López, P. H., Orantes Calleja, P. D., & Vilchis Bravo, H. (2024). Production of Biomass and Lipid Yields of Chlorella sp. Cultivated in Autotrophic and Mixotrophic Media . Ciencia Latina Revista Científica Multidisciplinar, 8(5), 4533-4551. https://doi.org/10.37811/cl_rcm.v8i5.13912
Sección
Ciencias y Tecnologías