Fotobiomodulación: Revisión Narrativa Sobre sus Efectos en Humanos
Resumen
Introducción: La fotobiomodulación es una modalidad terapéutica basada en la interacción de la luz con tejidos biológicos, modulando procesos celulares relacionados a la inflamación y reparación por sus efectos en moléculas como el citocromo c oxidasa, melanina, hemoglobina y agua. El objetivo de este artículo es enunciar los mecanismos estudiados por los cuales la terapia fotobiomoduladora ejerce sus efectos. Métodos: Se realizó una revisión de la literatura referente a los mecanismos fisiológicos de la terapia de fotobiomodulación en humanos, usando la base de datos Pubmed. Resultados: Las longitudes de onda con efectos terapéuticos más amplios son las frecuencias roja e infrarroja cercana. Su mecanismo de acción involucra regulación positiva y negativa en vías de señalización mitocondrial, transcripcional y respuestas epigenéticas. Estos efectos promueven la cicatrización de heridas, la regulación inmunológica y la neuroprotección. Conclusiones: La terapia de fotobiomodulación ejerce efectos biológicos a través de vías moduladoras de la respuesta inflamatoria, vías energéticas y cascadas de señalización relacionadas a la transcripción genética y epigenética. Estos efectos son acumulables tras periodos prolongados y controlados de exposición. Es también una modalidad de mínima invasión, con efectividad como adyuvante o en modalidad monoterapéutica. Más investigación y protocolos de larga duración serán necesarios para evaluar de forma rigurosa su dosimetría y seguridad a corto y largo plazo.
Descargas
Citas
Ailioaie, L. M., & Litscher, G. (2021). Photobiomodulation and Sports: Results of a Narrative Review. Life (Basel, Switzerland), 11(12), 1339.
https://doi.org/10.3390/life11121339
Al-Maweri, S. A., Kalakonda, B., Al-Soneidar, W. A., Al-Shamiri, H. M., Alakhali, M. S., & Alaizari, N. (2017). Efficacy of low-level laser therapy in management of symptomatic oral lichen planus: a systematic review. Lasers in medical science, 32(6), 1429–1437. https://doi.org/10.1007/s10103-017-2233-7
Alayat, M. S., Elsodany, A. M., & El Fiky, A. A. (2014). Efficacy of high and low level laser therapy in the treatment of Bell's palsy: a randomized double blind placebo-controlled trial. Lasers in medical science, 29(1), 335–342.
https://doi.org/10.1007/s10103-013-1352-z
Ash, C., Dubec, M., Donne, K., Bashford, T. (2017) Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers in medical science, 32(8), 1909-1918. doi: 10.1007/s10103-017-2317-4.
Aziz-Jalali, M. H., Tabaie, S. M., & Djavid, G. E. (2012). Comparison of Red and Infrared Low-level Laser Therapy in the Treatment of Acne Vulgaris. Indian journal of dermatology, 57(2), 128–130.
https://doi.org/10.4103/0019-5154.94283
Barolet, D. (2018). Photobiomodulation in Dermatology: Harnessing Light from Visible to Near Infrared. Medical Research Archives, 6(1). doi:10.18103/mra.v6i1.1610
Barrett, D. W., & Gonzalez-Lima, F. (2013). Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience, 230, 13–23.
https://doi.org/10.1016/j.neuroscience.2012.11.016
Brosseau, L., Robinson, V., Wells, G., Debie, R., Gam, A., Harman, K., Morin, M., Shea, B., & Tugwell, P. (2005). Low level laser therapy (Classes I, II and III) for treating rheumatoid arthritis. The Cochrane database of systematic reviews, 2005(4), CD002049.
https://doi.org/10.1002/14651858.CD002049.pub2
Chang, W. D., Wu, J. H., Wang, H. J., & Jiang, J. A. (2014). Therapeutic outcomes of low-level laser therapy for closed bone fracture in the human wrist and hand. Photomedicine and laser surgery, 32(4), 212–218.
https://doi.org/10.1089/pho.2012.3398
Chatterjee, P., Srivastava, A. K., Kumar, D. A., Chakrawarty, A., Khan, M. A., Ambashtha, A. K., Kumar, V., De Taboada, L., & Dey, A. B. (2019). Effect of deep tissue laser therapy treatment on peripheral neuropathic pain in older adults with type 2 diabetes: a pilot randomized clinical trial. BMC geriatrics, 19(1), 218.
https://doi.org/10.1186/s12877-019-1237-5
Chauhan A, & Gretz, N. (2021). Role of Visible Light on Skin Melanocytes: A Systematic Review. Photochemistry and photobiology, 97(5), 911-915. doi: 10.1111/php.13454.
Chen, Y. T., Wang, H. H., Wang, T. J., Li, Y. C., & Chen, T. J. (2016). Early application of low-level laser may reduce the incidence of postherpetic neuralgia (PHN). Journal of the American Academy of Dermatology, 75(3), 572–577.
https://doi.org/10.1016/j.jaad.2016.03.050
Colombo, E., Signore, A., Aicardi, S., Zekiy, A., Utyuzh, A., Benedicenti, S., & Amaroli, A. (2021). Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review. Biomedicines, 9(3), 274.
https://doi.org/10.3390/biomedicines9030274
Cosic, I., Hodder, A. N., Aguilar, M. I., & Hearn, M. T. (1991). Resonant recognition model and protein topography. Model studies with myoglobin, hemoglobin and lysozyme. European journal of biochemistry, 198(1), 113–119.
https://doi.org/10.1111/j.1432-1033.1991.tb15993.x
Cruz, E. D., Ziga Paulo, A., Ramos Lopez, H. C., & Jara Jiménez, J. (2021). Férula con terapia de luz roja e infrarroja para el síndrome del túnel carpiano. Memorias Del Congreso Nacional De Ingeniería Biomédica, 8(1), 258–261. Recuperado a partir de
http://memoriascnib.mx/index.php/memorias/article/view/830
da Rocha, E. A., Alvarez, M. M. P., Pelosine, A. M., Carrilho, M. R. O., Tersariol, I. L. S., & Nascimento, F. D. (2022). Laser Photobiomodulation 808 nm: Effects on Gene Expression in Inflammatory and Osteogenic Biomarkers in Human Dental Pulp Stem Cells. Frontiers in pharmacology, 12, 782095.
https://doi.org/10.3389/fphar.2021.782095
de Farias Gabriel, A., Wagner, V. P., Correa, C., Webber, L. P., Pilar, E. F. S., Curra, M., Carrard, V. C., Martins, M. A. T., & Martins, M. D. (2019). Photobiomodulation therapy modulates epigenetic events and NF-κB expression in oral epithelial wound healing. Lasers in medical science, 34(7), 1465–1472.
https://doi.org/10.1007/s10103-019-02745-0
de Freitas, V., Guarnier, F. A., Alves, T., Soares-Caldeira, L. F., Moura Zagatto, A., & de Paula Ramos, S. (2021). Efectos de la terapia con diodos emisores de luz en la recuperación de jugadores de fútbol sala masculino. Apuntes Educación Física y Deportes, 37(146), 52-62.
De Marchi, T., Ferlito, J. V., Ferlito, M. V., Salvador, M., & Leal-Junior, E. C. P. (2022). Can Photobiomodulation Therapy (PBMT) Minimize Exercise-Induced Oxidative Stress? A Systematic Review and Meta-Analysis. Antioxidants (Basel, Switzerland), 11(9), 1671.
https://doi.org/10.3390/antiox11091671
Degerman, M., Öhman, M., & Bertilson, B. C. (2022). Photobiomodulation, as additional treatment to traditional dressing of hard-to-heal venous leg ulcers, in frail elderly with municipality home healthcare. PloS one, 17(9), e0274023.
https://doi.org/10.1371/journal.pone.0274023
Dehlin, O., Elmståhl, S., & Gottrup, F. (2007). Monochromatic phototherapy: effective treatment for grade II chronic pressure ulcers in elderly patients. Aging clinical and experimental research, 19(6), 478–483.
https://doi.org/10.1007/BF03324734
Dhlamini, T., & Houreld, N. N. (2022). Clinical Effect of Photobiomodulation on Wound Healing of Diabetic Foot Ulcers: Does Skin Color Needs to Be Considered?. Journal of diabetes research, 2022, 3312840.
https://doi.org/10.1155/2022/3312840
Downes, A., & Blunt, T. P. (1877). The Influence of Light upon the Development of Bacteria 1. En Nature (Vol. 16, Issue 402, pp. 218–218). Springer Science and Business Media LLC.
https://doi.org/10.1038/016218a0
Ferraresi, C., Huang, Y. Y., & Hamblin, M. R. (2016). Photobiomodulation in human muscle tissue: an advantage in sports performance?. Journal of biophotonics, 9(11-12), 1273–1299.
https://doi.org/10.1002/jbio.201600176
Figueiro Longo, M. G., Tan, C. O., Chan, S. T., Welt, J., Avesta, A., Ratai, E., Mercaldo, N. D., Yendiki, A., Namati, J., Chico-Calero, I., Parry, B. A., Drake, L., Anderson, R., Rauch, T., Diaz-Arrastia, R., Lev, M., Lee, J., Hamblin, M., Vakoc, B., & Gupta, R. (2020). Effect of Transcranial Low-Level Light Therapy vs Sham Therapy Among Patients With Moderate Traumatic Brain Injury: A Randomized Clinical Trial. JAMA network open, 3(9), e2017337.
https://doi.org/10.1001/jamanetworkopen.2020.17337
Figueiro, M. G., & Pedler, D. (2020). Red light: A novel, non-pharmacological intervention to promote alertness in shift workers. Journal of safety research, 74, 169–177.
https://doi.org/10.1016/j.jsr.2020.06.003
Giglio de Oliveira, R. T., Martinez Zugaib Abdalla, B., Suzuki Locatelli, D., Cesar de Oliveira, A. V., & Cohen, S. (2021). Terapia combinada de laser de CO 2 e luz intensa pulsada no tratamento de lesões vasculares. Surgical & Cosmetic Dermatology, 13( ), .
https://doi.org/10.5935/scd1984-8773.2021130011
González-Muñoz, A., Cuevas-Cervera, M., Pérez-Montilla, J. J., Aguilar-Núñez, D., Hamed-Hamed, D., Aguilar-García, M., Pruimboom, L., & Navarro-Ledesma, S. (2023). Efficacy of Photobiomodulation Therapy in the Treatment of Pain and Inflammation: A Literature Review. Healthcare (Basel, Switzerland), 11(7), 938.
https://doi.org/10.3390/healthcare11070938
Grass, F., Klima, H., & Kasper, S. (2004). Biophotons, microtubules and CNS, is our brain a "holographic computer"?. Medical hypotheses, 62(2), 169–172. https://doi.org/10.1016/S0306-9877(03)00308-6
Gøtzsche P. C. (2011). Niels Finsen's treatment for lupus vulgaris. Journal of the Royal Society of
edicine, 104(1), 41–42.
https://doi.org/10.1258/jrsm.2010.10k066
Hamblin M. R. (2016). Shining light on the head: Photobiomodulation for brain disorders. BBA clinical, 6, 113–124.
https://doi.org/10.1016/j.bbacli.2016.09.002
Hamblin M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS biophysics, 4(3), 337–361.
https://doi.org/10.3934/biophy.2017.3.337
Hamblin M. R. (2018). Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochemistry and photobiology, 94(2), 199–212.
https://doi.org/10.1111/php.12864
Hamblin, M. R., Nelson, S. T., & Strahan, J. R. (2018). Photobiomodulation and Cancer: What Is the Truth?. Photomedicine and laser surgery, 36(5), 241–245.
https://doi.org/10.1089/pho.2017.4401
Heo, J. C., Park, J. A., Kim, D. K., & Lee, J. H. (2019). Photobiomodulation (660 nm) therapy reduces oxidative stress and induces BDNF expression in the hippocampus. Scientific reports, 9(1), 10114.
https://doi.org/10.1038/s41598-019-46490-4
Hong, G. Y., Shin, B. C., Park, S. N., Gu, Y. H., Kim, N. G., Park, K. J., Kim, S. Y., & Shin, Y. I. (2016). Randomized controlled trial of the efficacy and safety of self-adhesive low-level light therapy in women with primary dysmenorrhea. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics, 133(1), 37–42.
https://doi.org/10.1016/j.ijgo.2015.08.004
Hsieh, H. J., Liu, C. A., Huang, B., Tseng, A. H., & Wang, D. L. (2014). Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. Journal of biomedical science, 21(1), 3.
https://doi.org/10.1186/1423-0127-21-3
Huang L. D. (2022). Brighten the Future: Photobiomodulation and Optogenetics. Focus (American Psychiatric Publishing), 20(1), 36–44. https://doi.org/10.1176/appi.focus.20210025
Izukura, H., Kanezaki, M., & Ebihara, S. (2019). Alleviation of Dyspnea Sensation by Phototherapy in Healthy Adults. Respiratory care, 64(9), 1082–1087.
https://doi.org/10.4187/respcare.06496
Kim H. P. (2014). Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation. Biomolecules & therapeutics, 22(6), 491–496.
https://doi.org/10.4062/biomolther.2014.083
Kumar Rajendran, N., George, B. P., Chandran, R., Tynga, I. M., Houreld, N., & Abrahamse, H. (2019). The Influence of Light on Reactive Oxygen Species and NF-кB in Disease Progression. Antioxidants (Basel, Switzerland), 8(12), 640.
https://doi.org/10.3390/antiox8120640
Lee, S. Y., Park, K. H., Choi, J. W., Kwon, J. K., Lee, D. R., Shin, M. S., Lee, J. S., You, C. E., & Park, M. Y. (2007). A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. Journal of photochemistry and photobiology. B, Biology, 88(1), 51–67.
https://doi.org/10.1016/j.jphotobiol.2007.04.008
Leisman, G., Machado, C., Machado, Y., & Chinchilla-Acosta, M. (2018). Effects of Low-Level Laser Therapy in Autism Spectrum Disorder. Advances in experimental medicine and biology, 1116, 111–130.
https://doi.org/10.1007/5584_2018_234
Leyane, T. S., Jere, S. W., & Houreld, N. N. (2021). Cellular Signalling and Photobiomodulation in Chronic Wound Repair. International journal of molecular sciences, 22(20), 11223. https://doi.org/10.3390/ijms222011223
Li, Z. J., Wang, Y., Zhang, H. F., Ma, X. L., Tian, P., & Huang, Y. (2016). Effectiveness of low-level laser on carpal tunnel syndrome: A meta-analysis of previously reported randomized trials. Medicine, 95(31), e4424.
https://doi.org/10.1097/MD.0000000000004424
Liebert, A., Capon, W., Pang, V., Vila, D., Bicknell, B., McLachlan, C., & Kiat, H. (2023). Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines, 11(2), 237.
https://doi.org/10.3390/biomedicines11020237
Lima, P. L. V., Pereira, C. V., Nissanka, N., Arguello, T., Gavini, G., Maranduba, C. M. D. C., Diaz, F., & Moraes, C. T. (2019). Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase. Journal of photochemistry and photobiology. B, Biology, 194, 71–75.
https://doi.org/10.1016/j.jphotobiol.2019.03.015
Magalhães, F. C., & Ferraresi, C. (2022). Photobiomodulation Therapy on the Treatment of Insulin Resistance: A Narrative Review. Photobiomodulation, photomedicine, and laser surgery, 40(9), 597–603.
https://doi.org/10.1089/photob.2022.0031
Malliaropoulos, N., Kiritsi, O., Tsitas, K., Christodoulou, D., Akritidou, A., Del Buono, A., & Maffulli, N. (2013). Low-level laser therapy in meniscal pathology: a double-blinded placebo-controlled trial. Lasers in medical science, 28(4), 1183–1188.
https://doi.org/10.1007/s10103-012-1219-8
Mester, E, Ludany, G, Selyei, M, Szende, B, & Total, G J. (1968). The stimulating effect of low power laser rays on biological systems.. Reino Unido.
Mester, E., Szende, B., & Gärtner, P. (1968). Die Wirkung der Lasstrahlen auf den Haarwuchs der Maus [The effect of laser beams on the growth of hair in mice]. Radiobiologia, radiotherapia, 9(5), 621–626.
Mollasadeghi, A., Mirmohammadi, S. J., Mehrparvar, A. H., Davari, M. H., Shokouh, P., Mostaghaci, M., Baradaranfar, M. H., & Bahaloo, M. (2013). Efficacy of low-level laser therapy in the management of tinnitus due to noise-induced hearing loss: a double-blind randomized clinical trial. TheScientificWorldJournal, 2013, 596076.
https://doi.org/10.1155/2013/596076
Mosilhy, E. A., Alshial, E. E., Eltaras, M. M., Rahman, M. M. A., Helmy, H. I., Elazoul, A. H., Hamdy, O., & Mohammed, H. S. (2022). Non-invasive transcranial brain modulation for neurological disorders treatment: A narrative review. Life sciences, 307, 120869.
https://doi.org/10.1016/j.lfs.2022.120869
Murugan, N. J., Rouleau, N., Karbowski, L. M., & Persinger, M. A. (2017). Biophotonic markers of malignancy: Discriminating cancers using wavelength-specific biophotons. Biochemistry and biophysics reports, 13, 7–11.
https://doi.org/10.1016/j.bbrep.2017.11.001
Neuman, I., & Finkelstein, Y. (1997). Narrow-band red light phototherapy in perennial allergic rhinitis and nasal polyposis. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology, 78(4), 399–406.
https://doi.org/10.1016/S1081-1206(10)63202-4
Oberoi, S., Zamperlini-Netto, G., Beyene, J., Treister, N. S., & Sung, L. (2014). Effect of prophylactic low level laser therapy on oral mucositis: a systematic review and meta-analysis. PloS one, 9(9), e107418.
https://doi.org/10.1371/journal.pone.0107418
Petz, F. F. C., Félix, J. V. C., Roehrs, H., Pott, F. S., Stocco, J. G. D., Marcos, R. L., & Meier, M. J. (2020). Effect of Photobiomodulation on Repairing Pressure Ulcers in Adult and Elderly Patients: A Systematic Review. Photochemistry and photobiology, 96(1), 191–199.
https://doi.org/10.1111/php.13162
Rodríguez-Santana, E., & Santana-Blank, L. (2014). Emerging evidence on the crystalline water-light interface in ophthalmology and therapeutic implications in photobiomodulation: first communication. Photomedicine and laser surgery, 32(4), 240–242.
https://doi.org/10.1089/pho.2013.3682
Salehpour, F., Khademi, M., Bragin, D. E., & DiDuro, J. O. (2022). Photobiomodulation Therapy and the Glymphatic System: Promising Applications for Augmenting the Brain Lymphatic Drainage System. International journal of molecular sciences, 23(6), 2975.
https://doi.org/10.3390/ijms23062975
Santana-Blank, L., Rodríguez-Santana, E., & Santana-Rodríguez, K. E. (2012). Photobiomodulation of aqueous interfaces as selective rechargeable bio-batteries in complex diseases: personal view. Photomedicine and laser surgery, 30(5), 242–249.
https://doi.org/10.1089/pho.2011.3123
Santana-Blank, L., Rodríguez-Santana, E., Santana-Rodríguez, K. E., & Reyes, H. (2016). "Quantum Leap" in Photobiomodulation Therapy Ushers in a New Generation of Light-Based Treatments for Cancer and Other Complex Diseases: Perspective and Mini-Review. Photomedicine and laser surgery, 34(3), 93–101.
https://doi.org/10.1089/pho.2015.4015
Sommer A. P. (2018). Aging Is a Sticky Business. Photomedicine and laser surgery, 36(5), 284–286. https://doi.org/10.1089/pho.2017.4393
Sommer, A. P., Schemmer, P., Pavláth, A. E., Försterling, H. D., Mester, Á. R., & Trelles, M. A. (2020). Quantum biology in low level light therapy: death of a dogma. Annals of translational medicine, 8(7), 440.
https://doi.org/10.21037/atm.2020.03.159
Souza, N. H. C., Mesquita-Ferrari, R. A., Rodrigues, M. F. S. D., da Silva, D. F. T., Ribeiro, B. G., Alves, A. N., Garcia, M. P., Nunes, F. D., da Silva Junior, E. M., França, C. M., Bussadori, S. K., & Fernandes, K. P. S. (2018). Photobiomodulation and different macrophages phenotypes during muscle tissue repair. Journal of cellular and molecular medicine, 22(10), 4922–4934.
https://doi.org/10.1111/jcmm.13757
Stasinopoulos, D., Papadopoulos, K., Lamnisos, D., & Stergioulas, A. (2016). LLLT for the management of patients with ankylosing spondylitis. Lasers in medical science, 31(3), 459–469.
https://doi.org/10.1007/s10103-016-1874-2
Teggi, R., Bellini, C., Fabiano, B., & Bussi, M. (2008). Efficacy of low-level laser therapy in Ménière's disease: a pilot study of 10 patients. Photomedicine and laser surgery, 26(4), 349–353. https://doi.org/10.1089/pho.2007.2186
Toida, M., Watanabe, F., Goto, K., & Shibata, T. (2003). Usefulness of low-level laser for control of painful stomatitis in patients with hand-foot-and-mouth disease. Journal of clinical laser medicine & surgery, 21(6), 363–367. https://doi.org/10.1089/104454703322650176
Wong-Riley, M. T., Liang, H. L., Eells, J. T., Chance, B., Henry, M. M., Buchmann, E., Kane, M., & Whelan, H. T. (2005). Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. The Journal of biological chemistry, 280(6), 4761–4771.
https://doi.org/10.1074/jbc.M409650200
Xu, Y., Lin, Y., Gao, S., & Shen, J. (2018). Study on mechanism of release oxygen by photo-excited hemoglobin in low-level laser therapy. Lasers in medical science, 33(1), 135–139.
https://doi.org/10.1007/s10103-017-2363-y
Yang, L., Youngblood, H., Wu, C., & Zhang, Q. (2020). Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Translational neurodegeneration, 9(1), 19.
https://doi.org/10.1186/s40035-020-00197-z
Ying, W. Z., Aaron, K., & Sanders, P. W. (2008). Dietary salt activates an endothelial proline-rich tyrosine kinase 2/c-Src/phosphatidylinositol 3-kinase complex to promote endothelial nitric oxide synthase phosphorylation. Hypertension (Dallas, Tex. : 1979), 52(6), 1134–1141.
https://doi.org/10.1161/HYPERTENSIONAHA.108.121582
Zamani, A. R. N., Saberianpour, S., Geranmayeh, M. H., Bani, F., Haghighi, L., & Rahbarghazi, R. (2020). Modulatory effect of photobiomodulation on stem cell epigenetic memory: a highlight on differentiation capacity. Lasers in medical science, 35(2), 299–306.
https://doi.org/10.1007/s10103-019-02873-7
Zarei, M., Wikramanayake, T. C., Falto-Aizpurua, L., Schachner, L. A., & Jimenez, J. J. (2016). Low level laser therapy and hair regrowth: an evidence-based review. Lasers in medical science, 31(2), 63–371.
https://doi.org/10.1007/s10103-015-1818-2
Zhevago, N. A., & Samoilova, K. A. (2006). Pro- and anti-inflammatory cytokine content in human peripheral blood after its transcutaneous (in vivo) and direct (in vitro) irradiation with polychromatic visible and infrared light. Photomedicine and laser surgery, 24(2), 129–139.
https://doi.org/10.1089/pho.2006.24.129
Zúñiga, S., Chaple Gil, A., & Fernández Godoy, E. (2018). Laser de baja potencia en Ortodoncia. Rev Cubana Estomatol, 55(3), 43-49. Recuperado de z1
Derechos de autor 2024 Emilio Reyes Ramos, Martha Patricia Lezama Hernández, Jorda Aleiria Albarrán Melzer , Crystell Guadalupe Guzmán Priego , Nury Hernández Díaz
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.