El machine learning para abordar el abandono escolar: Una revisión de los modelos más innovadores

Palabras clave: modelos, machine learning, abandono, deserción, educación

Resumen

El objetivo de este estudio es analizar el papel del machine learning como herramienta innovadora para identificar, predecir y abordar el abandono escolar, evaluando los modelos más efectivos y su aplicación en contextos educativos. Para ello, se llevó a cabo una revisión sistemática en las bases de datos Scopus, Web of Science (WOS) y SciELO, utilizando la metodología PRISMA y adoptando un enfoque cualitativo y descriptivo. Los criterios de inclusión comprendieron trabajos publicados entre 2020 y 2024, estudios originales, artículos en inglés o español y documentos con texto completo que estuvieran directamente relacionados con el objetivo del estudio. Se emplearon palabras clave como "machine learning", "machine learning algorithms", "learning algorithms", "machine learning models", "learning models", "school dropout", "school abandonment", "student dropout", "student attrition". De los 773 documentos identificados, se eliminaron 753 por no cumplir con los criterios establecidos, resultando en 20 artículos seleccionados para su análisis. Los resultados muestran que modelos como las Redes Neuronales Artificiales (ANN), Vecinos Más Cercanos (KNN), Regresión Lineal (LR) y Árboles de Decisión (DT) han demostrado eficacia en la clasificación y predicción. El rendimiento académico previo es un predictor clave del abandono escolar, junto con factores como dificultades financieras y la falta de apoyo social, que afectan la permanencia de los estudiantes. En conclusión, el machine learning (ML) en la educación resalta su capacidad para identificar y prevenir el abandono escolar. Las técnicas de ML permiten a las instituciones predecir con precisión los riesgos de deserción y desarrollar intervenciones personalizadas para los estudiantes.

Descargas

La descarga de datos todavía no está disponible.

Citas

Alenezi, H. S., & Faisal, M. H. (2020). Utilizing crowdsourcing and machine learning in education: Literature review. Education and Information Technologies, 25(4), 2971–2986.

https://doi.org/10.1007/s10639-020-10102-w

Alhabeeb, S., Alrusayni, N., Almutiri, R., Alhumud, S., & Al-Hagery, M. A. (2024). Blockchain and machine learning in education: a literature review. IAES International Journal of Artificial Intelligence, 13(1), 581–596. https://doi.org/10.11591/ijai.v13.i1.pp581-596

Bettany-Saltikov, J., & McSherry, R. (2024). How to do a Systematic Literature Review in Nursing: A Step-by-Step Guide (3era. Ed. (ed.)). https://goo.su/wMxVzm

Delen, D., Davazdahemami, B., & Rasouli Dezfouli, E. (2023). Predicting and Mitigating Freshmen Student Attrition: A Local-Explainable Machine Learning Framework. Information Systems Frontiers, 26(2), 641–662. https://doi.org/10.1007/s10796-023-10397-3

European Commission. (2024). Reducir el abandono escolar prematuro: tratamiento y prevención del abandono escolar. https://school-education.ec.europa.eu/mk/learn/courses/reducing-early-school-leaving-treatment-and-prevention-dropouts

Fauszt, T., Erdélyi, K., Dobák, D., Bognár, L., & Kovács, E. (2023). Design of a Machine Learning Model to Predict Student Attrition. International Journal of Emerging Technologies in Learning, 18(17), 184–195. https://doi.org/10.3991/ijet.v18i17.41449

Freitas, F. A. d. S., Vasconcelos, F. F. X., Peixoto, S. A., Hassan, M. M., Ali Akber Dewan, M., de Albuquerque, V. H. C., & Rebouças Filho, P. P. (2020). IoT system for school dropout prediction using machine learning techniques based on socioeconomic data. Electronics, 9, 1–14. https://doi.org/10.3390/electronics9101613

Gómez-Pulido, J. A., Park, Y., Soto, R., & Lanza-Gutiérrez, J. M. (2023). Data Analytics and Machine Learning in Education. Applied Sciences (Switzerland), 13(3), 13–15.

https://doi.org/10.3390/app13031418

Hassan, M. A., Muse, A. H., & Nadarajah, S. (2024). applied sciences Learning : Insights from the 2022 National Education Accessibility Survey in Somaliland. Applied Sciences, 14.

https://doi.org/10.3390/app14177593

Jiménez-Gutiérrez, A. L., Mota-Hernández, C. I., Mezura-Montes, E., & Alvarado-Corona, R. (2024). Application of the performance of machine learning techniques as support in the prediction of school dropout. Scientific Reports, 14, 1–8. https://doi.org/10.1038/s41598-024-53576-1

Kabathova, J., & Drlik, M. (2021). Towards predicting student’s dropout in university courses using different machine learning techniques. Applied Sciences, 11, 1–19. https://doi.org/10.3390/app11073130

Krüger, J. G. C., Britto, A. de S., & Barddal, J. P. (2023). An explainable machine learning approach for student dropout prediction. Expert Systems with Applications, 233, 1–9. https://doi.org/10.1016/j.eswa.2023.120933

Kuz, A., & Morales, R. (2023). Ciencia de Datos Educativos y aprendizaje automático: un caso de estudio sobre la deserción estudiantil universitaria en México. Education in the Knowledge Society, 24, 1–14. https://doi.org/10.14201/eks.30080

Matz, S. C., Bukow, C. S., Peters, H., Deacons, C., Dinu, A., & Stachl, C. (2023). Using machine learning to predict student retention from socio‑demographic characteristics and app‑based engagement metrics. Scientific Reports, 13(1), 1–16. https://doi.org/10.1038/s41598-023-32484-w

Mduma, N. (2023a). Data Balancing Techniques for Predicting Student Dropout Using Machine Learning. Data, 8(3). https://doi.org/10.3390/data8030049

Mduma, N. (2023b). Data Balancing Techniques for Predicting Student Dropout Using Machine Learning. Data, 8(49), 1–14. https://doi.org/10.3390/data8030049

Mnyawami, Y. N., Maziku, H. H., & Mushi, J. C. (2022). Enhanced Model for Predicting Student Dropouts in Developing Countries Using Automated Machine Learning Approach: A Case of Tanzanian’s Secondary Schools. Applied Artificial Intelligence, 36(1). https://doi.org/10.1080/08839514.2022.2071406

Nimbalkar, A. A., & Berad, A. T. (2021). The increasing importance of AI applications in E-Commerce. Vidyabharati International Interdisciplinary Research Journal, 13(1), 67–77. https://www.viirj.org/vol13issue1/56.pdf

Niyogisubizo, J., Liao, L., Nziyumva, E., Murwanashyaka, E., & Nshimyumukiza, P. C. (2022). Predicting student’s dropout in university classes using two-layer ensemble machine learning approach: A novel stacked generalization. Computers and Education: Artificial Intelligence, 3, 1–12. https://doi.org/10.1016/j.caeai.2022.100066

Okagbue, E. F., Ezeachikulo, U. P., Akintunde, T. Y., Tsakuwa, M. B., Ilokanulo, S. N., Obiasoanya, K. M., Ilodibe, C. E., & Ouattara, C. A. T. (2023). A comprehensive overview of artificial intelligence and machine learning in education pedagogy: 21 Years (2000–2021) of research indexed in the scopus database. Social Sciences and Humanities Open, 8(1), 100655. https://doi.org/10.1016/j.ssaho.2023.100655

Okoye, K., Nganji, J. T., Escamilla, J., & Hosseini, S. (2024a). Machine learning model (RG-DMML) and ensemble algorithm for prediction of students’ retention and graduation in education. Computers and Education: Artificial Intelligence, 6, 100205. https://doi.org/10.1016/j.caeai.2024.100205

Okoye, K., Nganji, J. T., Escamilla, J., & Hosseini, S. (2024b). Machine learning model (RG-DMML) and ensemble algorithm for prediction of students’ retention and graduation in education. Computers and Education: Artificial Intelligence, 6, 1–13. https://doi.org/10.1016/j.caeai.2024.100205

Opazo, D., Moreno, S., Álvarez-Miranda, E., & Pereira, J. (2021). Analysis of first-year university student dropout through machine learning models: A comparison between universities. Mathematics, 9, 1–27. https://doi.org/10.3390/math9202599

Palacios, C. A., Reyes-Suárez, J. A., Bearzotti, L. A., Leiva, V., & Marchant, C. (2021). Knowledge discovery for higher education student retention based on data mining: Machine learning algorithms and case study in chile. Entropy, 23, 1–23. https://doi.org/10.3390/e23040485

Porras, M., Lara, J. A., Romero, C., & Ventura, S. (2023). A Case-Study Comparison of Machine Learning Approaches for Predicting Student ’ s Dropout from Multiple Online Educational Entities. Algorithms, 16(554), 1–21. https://doi.org/10.3390/a16120554

Razaulla, S. M., Pasha, M., & Farooq, M. U. (2022). Integration of Machine Learning in Education: Challenges, Issues and Trends BT - Machine Learning and Internet of Things for Societal Issues (C. Satyanarayana, X.-Z. Gao, C.-Y. Ting, & N. B. Muppalaneni (eds.); pp. 23–34). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-5090-1_2

Sahana, S., Singh, D., & Nath, I. (2023). Importance of AI and ML Towards Smart Sensor Network Utility Enhancement. Encyclopedia of Data Science and Machine Learning, 240–262. https://doi.org/10.4018/978-1-7998-9220-5.ch015

Segura, M., Mello, J., & Hernández, A. (2022). Machine Learning Prediction of University Student Dropout: Does Preference Play a Key Role? Mathematics, 10(18), 1–20. https://doi.org/10.3390/math10183359

Selim, K. S., & Rezk, S. S. (2023). On predicting school dropouts in Egypt: A machine learning approach. Education and Information Technologies, 28(7), 9235–9266. https://doi.org/10.1007/s10639-022-11571-x

Shah, D., Patel, D., Adesara, J., Hingu, P., & Shah, M. (2021). Exploiting the Capabilities of Blockchain and Machine Learning in Education. Augmented Human Research, 6(1), 1. https://doi.org/10.1007/s41133-020-00039-7

Sinha, A., Menon, G. R., & John, D. (2022). Beginer’s guide for systematic reviews. https://main.icmr.nic.in/sites/default/files/upload_documents/BEGINNERS_GUIDE_FINAL_BOOK.pdf

Tito, A. E. A., Condori, B. O. H., & Vera, Y. P. (2023). Comparative analysis of Machine Learning Techniques for the prediction of cases of university dropout. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 51(09), 84–98. https://doi.org/10.17013/risti.51.84-98

Tiwari, R. (2023). The integration of AI and machine learning in education and its potential to personalize and improve student learning experiences. Interantional Journal of Scientific Research in Engineering and Management, 7(2). https://doi.org/10.55041/ijsrem17645

Vaarma, M., & Li, H. (2024). Predicting student dropouts with machine learning: An empirical study in Finnish higher education. Technology in Society, 76, 1–10. https://doi.org/10.1016/j.techsoc.2024.102474

Villar, A., & Velini, C. R. (2024). Supervised machine learning algorithms for predicting student dropout and academic success: a comparative study. Discover Artificial Intelligence, 4(2). https://doi.org/10.1007/s44163-023-00079-z

Villarreal-Torres, H., Ángeles-Morales, J., Cano-Mejía, J., Mejía-Murillo, C., Flores-Reyes, G., Palomino-Márquez, M., Marín-Rodriguez, W., & Andrade-Girón, D. (2023). Classification model for student dropouts using machine learning: A case study. EAI Endorsed Transactions on Scalable Information Systems, 10(5), 1–12. https://doi.org/10.4108/eetsis.vi.3455

Villegas-Ch, W., Govea, J., & Revelo-Tapia, S. (2023). Improving Student Retention in Institutions of Higher Education through Machine Learning: A Sustainable Approach. Sustainability (Switzerland), 15(19), 1–20. https://doi.org/10.3390/su151914512

Wu, J. (2020). Machine Learning in Education. 2020 International Conference on Modern Education and Information Management (ICMEIM), 56–63. https://doi.org/10.1109/ICMEIM51375.2020.00020

Zhou, Y., & Song, Z. (2020). Effectiveness analysis of machine learning in education big data. Journal of Physics: Conference Series, 1651(1). https://doi.org/10.1088/1742-6596/1651/1/012105

Publicado
2025-02-03
Cómo citar
Flores Satalaya, J. M. (2025). El machine learning para abordar el abandono escolar: Una revisión de los modelos más innovadores. Ciencia Latina Revista Científica Multidisciplinar, 8(6), 10993-11027. https://doi.org/10.37811/cl_rcm.v8i6.15824
Sección
Ciencias Sociales y Humanas