Relationship between altitude and physical, chemical and organoleptic quality attributes in beans of Coffea arabica L. with denomination of origin "Pluma" from Oaxaca, Mexico
Resumen
Oaxaca, Mexico, coffee (Coffea arabica L.) received its denomination of origin "Pluma" (NOM-255-SE, 2022). Previous studies indicate that the intrinsic characteristics of coffee originate from chemical components that intervene in the organoleptic attributes evaluated during cupping. The objective was to analyze the physical and chemical attributes of medium roasted Coffea arabica L. beans from the farms: “La Virginia” (1058 meters above sea level; masl), “La Palma” (1149 masl) and “Nuestra Señora del Carmen” (1343 masl) located in the area of Pluma, state of Oaxaca, Mexico. The physical analysis was performed according to NOM 255-SE-2022, the chemical analysis was attached to the AOAC, 2012, the evaluation of the organoleptic quality was established with respect to the quality standards of the Specialty Coffee Association and the statistical analysis was carried out by Principal Component Analysis. The physical analysis shows that the beans from the "Nuestra Señora del Carmen" farm have greater integrity than the other two farms, categorizing them as "premium" quality. The chemical analysis allowed establishing the existence of a correlation between altitude and the content of lipids, proteins, and titratable acidity, which influence the sensory characteristics of the coffee beverage, mainly in the body and acidity.
Descargas
Citas
Adhikari, J., Chambers, E., & Koppel, K. (2019). Impact of consumption temperature on sensory properties of hot brewed coffee. Food Research International, 115, 95-104.
https://doi.org/10.1016/j.foodres.2018.08.014
AOAC (2012). Official Methods of Analysis of AOAC International (P. Cunniff (Ed.)).
Barbosa, M. de S. G., Scholz, M. B. dos S., Kitzberger, C. S. G., & Benassi, M. de T. (2019). Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food Chemistry, 292 (September 2018), 275-280.
https://doi.org/10.1016/j.foodchem.2019.04.072
Bressani, A. P. P. P., Martinez, S. J., Sarmento, A. B. I., Borém, F. M., & Schwan, R. F. (2020). Organic acids produced during fermentation and sensory perception in specialty coffee using yeast starter culture. Food Research International, 128, 108773.
https://doi.org/10.1016/j.foodres.2019.108773
Cestari, A. (2021). Development of a fast and simple method to identify pure Arabica coffee and blended coffee by Infrared Spectroscopy. Journal of Food Science and Technology, 58(9), 3645-3654. https://doi.org/10.1007/s13197-021-05176-4. https://doi.org/10.1007/s13197-021-05176-4
Cordoba, N., Fernandez-Alduenda, M., Moreno, F. L., & Ruiz, Y. (2020). Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends in Food Science and Technology, 96, 45-60.
https://doi.org/10.1016/j.tifs.2019.12.004
Dippong, T., Dan, M., Kovacs, M. H., Kovacs, E. D., Levei, E. A., & Cadar, O. (2022). Analysis of Volatile Compounds, Composition, and Thermal Behavior of Coffee Beans According to Variety and Roasting Intensity. Foods, 11(19). https://doi.org/10.3390/foods11193146
Duicela Guambi, L.A., Velásquez Cedeño, S. del R., & Farfán Talledo, D. S. (2017).
Organoleptic quality of arabica coffees in relation to varieties and altitudes of growing areas, Ecuador. Revista Iberoamericana de Tecnología Postcosecha, 18(1), 67-77.
https://www.redalyc.org/pdf/813/81351597010.pdf
Farah (2004). Distribution in the bean, influence on beverage quality and bioavailability of chlorogenic acids in coffee. Federal University of Rio de Janeiro, Brazil.
Farah A. (2012). Coffee: Emerging Health Effects and Disease Prevention, Institute of Food Technologists, 27-43. https://doi.org/10.1002/9781119949893
Ferreira, W. P. M., Queiroz, D. M., Silvac, S. A., Tomaz, R. S., & Corrêa, P. C. (2016). Effects of the Orientation of the Mountainside, Altitude and Varieties on the Quality of the Coffee Beverage from the "Matas de Minas" Region, Brazilian Southeast. American Journal of Plant Sciences, 07(08), 1291-1303. https://doi.org/10.4236/ajps.2016.78124.
Figueiredo, L. P., Borém, F. M., Almeida, M. R., Oliveira, L. F. C. de, Alves, A. P. de C., & Santos, C. M. dos. (2019). Raman spectroscopy for the differentiation of Arabic coffee genotypes. Food Chemistry, 288(January), 262-267. https://doi.org/10.1016/j.foodchem.2019.02.093
González Vázquez, A., & Alcántara Sánchez, D. (2022). Organoleptic quality of traditional elite varieties of coffea arabica L. in Chiapas, Mexico. Ciencia Latina Revista Científica Multidisciplinar, 6(6), 5218-5231. https://doi.org/10.37811/cl_rcm.v6i6.3806
Horwitz, W., Latimer, G. W., & A. of O. A. C. (2010). AOAC Method 945.16.
Determination of Lipids (18th ed.).
Huanca, M. L. (2018). Physical evaluation of coffee bean (Coffea arabica L.) in different types of roasting and sensory quality, in cup destined to different Markets. 1–158. http://repositorio.umsa.bo/xmlui/handle/123456789/23813
INEGI. (2020). SCITEL. https://www.inegi.org.mx/app/scitel/consultas/index International Coffee Organization. (2023). Coffee Market Report.
https://icocoffee.org/es/specialized-reports/
Juárez González, T., Maldonado Astudillo, Y. I., González Mateos, R., Ramírez Sucre, M. O., Álvarez Fitz, P., & Salazar, R. (2021). Physicochemical and sensory characterization of coffee from the mountains of Guerrero. Revista Mexicana de Ciencias Agrícolas, 12(6), 1057-1069. https://doi.org/10.29312/remexca.v12i6.2773
Martins, P. M. M. M., Ribeiro, L. S., Miguel, M. G. da C. P., Evangelista, S. R., & Schwan,
R. F. (2019). Production of coffee (Coffea arabica) inoculated with yeasts: impact on quality. Journal of the Science of Food and Agriculture, 99(13), 5638-5645. https://doi.org/10.1002/jsfa.9820.
NMX-F-013-SCFI, (2010). Pure roasted coffee, in beans or ground, not decaffeinated or decaffeinated. Specifications and test methods. Ministry of Economy. United Mexican States.
Monteiro, P. I., Santos, J. S., Rodionova, O. Y., Pomerantsev, A., Chaves, E. S., Rosso, N. D., & Granato, D. (2019). Chemometric Authentication of Brazilian Coffees Based on Chemical Profiling. Journal of Food Science, 84(11), 3099-3108. https://doi.org/10.1111/1750-3841.14815.
NOM-255-SE, (2022). Pluma coffee, denomination, specifications, commercial information and test methods. Ministry of Economy. United Mexican States.
Ochoa, M. L. P. (2016). Phenolic compounds and fatty acid profile in green and roasted coffee beans (Coffea arabica L.) of cultivated varieties and hybrids.
Oestreich-Janzen, S. (2013). Physicochemical and sensory characterization of two coffee (Coffea arabica L.) varieties from western Honduras. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Issue March). Elsevier Inc. https://doi.org/10.1016/B978-0-12-409547-2.02786-4
Poltronieri, P., & Rossi, F. (2016). Challenges in Specialty Coffee Processing and Quality Assurance. Challenges, 7(2), 19. https://doi.org/10.3390/challe7020019
Quispe Capajaña, M. (2020). Study of physical quality and cup quality of coffee (Coffea arabica L.) from two growing areas of Sandia province harvest 2019. Revista Cientifica I+D Aswan Science, 1(1). https://doi.org/10.51392/rcidas.v1i1.2.
SCA (2018). Specialty Coffee Association. Coffee Standards Table of Contents. 14. https://static1.squarespace.com/static/584f6bbef5e23149e5522201/t/5bd985c1352f53cb4cc1be48/1540982325719/Coffee+Standards-Digital.pdf
SIAP. (2022). Monthly scenario of agrifood products. Coffee. Agriculture, 55, 4- 6.https://www.gob.mx/cms/uploads/attachment/file/653161/Escenario_huevo_jun21.p df
Solís, L. D., & Herrera, C. H. (2005). Development of an analytical method for the quantification of chlorogenic acids in coffee. Agronomía Costarricense, 29(2), 99-107.
Somnuk, K., Eawlex, P., & Prateepchaikul, G. (2017). Optimization of coffee oil extraction from spent coffee grounds using four solvents and prototype-scale extraction using circulation process. Agriculture and Natural Resources, 51(3), 181-189. https://doi.org/10.1016/j.anres.2017.01.003
Specialty Coffee Association (2021). Https://Sca.Coffee/.
Sustainable Harvest (2022). Tastify. Portland, OR. https://www.sustainableharvest.com/tastify-free-trial
Torres, G. A. L., Zezzo, L. V., Greco, R., & Coltri, P. P. (2022). Exposure To Climate Risk:
A Case Study For Coffee Farming In The Region Of Alta Mogiana , São Paulo. 94, 1-21.
https://doi.org/10.1590/0001-3765202220211379
Vazquez-Osorio, Y., Vuelta-Lorenzo, D., & Rizo-Mustelier, M. (2020). Studies on coffee (Coffea arabica) quality in Cuba. Redalyc, 66-81.
Wang, N., & Lim, L. T. (2012). Fourier transform infrared and physicochemical analyses of roasted coffee. Journal of Agricultural and Food Chemistry, 60(21), 5446-5453. https://doi.org/10.1021/jf300348e.
Worku, M., de Meulenaer, B., Duchateau, L., & Boeckx, P. (2018). Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and post harvest processing method. Food Research International, 105, 278-285. https://doi.org/10.1016/j.foodres.2017.11.016
Yasmeen, J., & Barzola, R. (2016). Universidad Nacional Agraria La Molina.
Derechos de autor 2025 Jesica Ariadna Jiménez Mendoza , Norma Francenia Santos Sánchez, Iván Antonio García Montalvo, Andrés Miguel Cruz, Carlos Francisco Varapizuela Sánchez

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.