Soluciones de Almacenamiento para Integración de Energías Renovables
Resumen
El presente trabajo ofrece una revisión general de los sistemas de almacenamiento de energía empleados junto a fuentes renovables. Las cuales son soluciones propuestas para la mitigación de los gases de efecto invernadero. Se expone la necesidad de complementar la generación eólica y solar con dispositivos que garanticen la estabilidad de la red eléctrica. Se analizan sistemas de energía hidroeléctrica de bombeo, sistemas de almacenamiento magnético superconductivo (SMES) y volantes de inercia. Así como sistemas electroquímicos como los son los supercondensadores, baterías (litio, plomo-ácido, NiMH) y pilas de combustible de óxido sólido, de alcohol directo, de carbonatos fundidos ácido fosfórico y alcalinas. Se detalla su principio de funcionamiento, ventajas, limitaciones, respuesta y requisitos de infraestructura. El trabajo concluye que la combinación de fuentes renovables con sistemas híbridos de gestión y almacenamiento es esencial para garantizar suministro, calidad de energía y transición energética sostenible.
Descargas
Citas
Abdelkareem, M. A., Elsaid, K., Wilberforce, T., Kamil, M., Sayed, E. T., & Olabi, A. (2021). Environmental aspects of fuel cells: A review. Science of the Total Environment, 752. https://doi.org/10.1016/j.scitotenv.2020.141803
Abeywardana, D. B. W., Hredzak, B., Agelidis, V. G., & Demetriades, G. D. (2017). Supercapacitor sizing method for energy-controlled filter-based hybrid energy storage systems. IEEE Transactions on Power Electronics, 32(2), 1626–1637. https://doi.org/10.1109/TPEL.2016.2552198
United States Environmental Protection Agency (2020). Sources of Greenhouse Gas Emissions. Climate Change. March 31, 2025
Allaoua, B., Asnoune, K., & Mebarki, B. (2017). Energy management of PEM fuel cell/ supercapacitor hybrid power sources for an electric vehicle. International Journal of Hydrogen Energy, 42(33), 21158–21166. https://doi.org/10.1016/j.ijhydene.2017.06.209
Amiryar, M. E., & Pullen, K. R. (2017). A review of flywheel energy storage system technologies and their applications. Applied Sciences, 7(3). https://doi.org/10.3390/app7030286
Arranz-Gimon, A., Zorita-Lamadrid, A., Morinigo-Sotelo, D., & Duque-Perez, O. (2021). A review of total harmonic distortion factors for the measurement of harmonic and interharmonic pollution in modern power systems. Energies, 14(20). https://doi.org/10.3390/en14206467
Babu A, V., & Calay, R. K. (2017). Development of a fuel cell propulsion system for the existing Mercedes B-Class 160 of petrol driven car. International Journal of Green Energy, 14(10), 801–810. https://doi.org/10.1080/15435075.2017.1330751
Benavides, D., Arévalo, P., Tostado-Véliz, M., Vera, D., Escamez, A., Aguado, J. A., & Jurado, F. (2022). An Experimental Study of Power Smoothing Methods to Reduce Renewable Sources Fluctuations Using Supercapacitors and Lithium-Ion Batteries. Batteries, 8(11). https://doi.org/10.3390/batteries8110228
Cassayre, L., Guzhov, B., Zielinski, M., & Biscans, B. (2022). Chemical processes for the recovery of valuable metals from spent nickel metal hydride batteries: A review. Renewable and Sustainable Energy Reviews, 170(October). https://doi.org/10.1016/j.rser.2022.112983
Chotia, I., & Chowdhury, S. (2016). Battery storage and hybrid battery supercapacitor storage systems: A comparative critical review. Proceedings of the 2015 IEEE Innovative Smart Grid Technologies - Asia, ISGT ASIA 2015. https://doi.org/10.1109/ISGT-Asia.2015.7387080
Colak, I., Bayindir, R., & Sagiroglu, S. (2020). The Effects of the Smart Grid System on the National Grids. 8th International Conference on Smart Grid, IcSmartGrid 2020, 122–126. https://doi.org/10.1109/icSmartGrid49881.2020.9144891
Corti, F., Laudani, A., Lozito, G. M., Palermo, M., Quercio, M., Pattini, F., & Rampino, S. (2023). Dynamic Analysis of a Supercapacitor DC-Link in Photovoltaic Conversion Applications. Energies.
Eto, J. H., LaCommare, K. H., Caswell, H. C., & Till, D. (2019). Distribution system versus bulk power system: Identifying the source of electric service interruptions in the US. IET Generation, Transmission and Distribution, 13(5), 717–723. https://doi.org/10.1049/iet-gtd.2018.6452
Gao, X., Wang, M., Yue, E., & Muljadi, W. (2013). Probabilistic Approach for Power Capacity Specification of Wind Energy Storage Systems Eduard Muljadi. IEEE Transactions on Industry Applications, 50(2), 1215–1224.
Guo, L., Hu, P., & Wei, H. (2023). Development of supercapacitor hybrid electric vehicle. Journal of Energy Storage, 65(March). https://doi.org/10.1016/j.est.2023.107269
Ibrahim, H., Ilinca, A., & Perron, J. (2008). Energy storage systems-Characteristics and comparisons. Renewable and Sustainable Energy Reviews, 12(5), 1221–1250. https://doi.org/10.1016/j.rser.2007.01.023
Kabir, M. M., & Demirocak, D. E. (2012). Degradation mechanisms in Li-ion batteries: a state-of- the-art review. Archives of Thermodynamics, 33(4), 23–40. https://doi.org/10.1002/er
Khlifi, F., & Belhadj, J. (2017). Smoothing power in microgrid by fast storage of electrical energy. International Conference on Green Energy and Conversion Systems, GECS 2017. https://doi.org/10.1109/GECS.2017.8066134
Khosravani, A., Safaei, E., Reynolds, M., Kelly, K. E., & Powell, K. M. (2023). Challenges ofreaching high renewable fractions in hybrid renewable energy systems. Energy Reports, 9, 1000–1017. https://doi.org/10.1016/j.egyr.2022.12.038
Kollimalla, S. K., Ukil, A., Gooi, H. B., Manandhar, U., & Tummuru, N. R. (2017). Optimization of Charge/Discharge Rates of a Battery Using a Two-Stage Rate-Limit Control. IEEE Transactions on Sustainable Energy, 8(2), 516–529. https://doi.org/10.1109/TSTE.2016.2608968
Lave, M., Kleissl, J., & Arias-Castro, E. (2012). High-frequency irradiance fluctuations and geographic smoothing. Solar Energy, 86(8), 2190–2199. https://doi.org/10.1016/j.solener.2011.06.031
Li, L., Huang, Z., Li, H., & Lu, H. (2016). A High-Efficiency Voltage Equalization Scheme for Supercapacitor Energy Storage System in Renewable Generation Applications. https://doi.org/10.3390/su8060548
Li, S., He, H., & Zhao, P. (2021). Energy management for hybrid energy storage system in electric vehicle: A cyber-physical system perspective. Energy, 230(September), 1–9. https://doi.org/10.1016/j.energy.2021.120890
Lopes, B. P. P., & Stamenkovic, V. R. (2020). Past, present, and future of lead–acid batteries. Batteries, 369(6506), 923–924.
Mahdi, B. S., Al-fadheeli, M. A., Sulaiman, N. bin, Hizam, H. bin, Shafie, S. bin, & Shehab, M. A. (2022). Comparative Study of DC/AC Inverter Control Techniques for Three Phase Grid Connected PV System. TEM Journal, 11(3), 1364–1375. https://doi.org/10.18421/TEM113-47
Mali, V., & Tripathi, B. (2022). Thermal Stability of Supercapacitor for Hybrid Energy Storage System in Lightweight Electric Vehicles: Simulation and Experiments. Journal of Modern Power Systems and Clean Energy, 10(1), 170–178. https://doi.org/10.35833/MPCE.2020.000311
Mesbahi, T., Khenfri, F., Rizoug, N., Bartholomeüs, P., & Le Moigne, P. (2017). Combined Optimal Sizing and Control of Li-Ion Battery/Supercapacitor Embedded Power Supply Using Hybrid Particle Swarm-Nelder-Mead Algorithm. IEEE Transactions on Sustainable Energy, 8(1), 59–73. https://doi.org/10.1109/TSTE.2016.2582927
Mumtaz, S., & Khan, L. (2017). Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system. In PLoS ONE (Vol. 12, Issue 3). https://doi.org/10.1371/journal.pone.0173966
NASA Earth Observatory. (2019). Solar-Powered China.
Nesterenko, G., Vakulenko, V., Zyryanov, V., Potapenko, A., Prankevich, G., & Aleksandrov, M. (2022). Analysis of the frequency deviation in off-grid power system of oil field. Energy Reports, 8, 831–838. https://doi.org/10.1016/j.egyr.2022.05.272
Noor Abu Dhabi. (2024). Noor Abu Dhabi is one of the world ’ s largest stand-alone operational solar plant located in Abu Dhab. https://noorabudhabi.ae/
Papageorgiou, P. G., Oureilidis, K. O., & Christoforidis, G. C. (2023). A systematic review of hybrid superconducting magnetic/battery energy storage systems: Applications, control strategies, benefits, limitations and future prospects. Renewable and Sustainable Energy Reviews, 183(May). https://doi.org/10.1016/j.rser.2023.113436
Power Techlogy. (2024). Power plant profile: MidAmerican Solar Star PV Park, US. https://www.power-technology.com/marketdata/power-plant-profile-midamerican-solar-star-pv-park-us/
Ș, S. N. K., & Shingare, P. (2011). A review on power quality challenges in renewable Energy grid integration. International Journal of Current Engineering and Technology, 6(5). https://doi.org/10.14741/ijcet/22774106/6.5.2016.14
Schulz, D. (2008). Luo X, Wang J, Dooner M, Clarke J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 2015;137:511–36. 24. Power Systems, 34(April). https://doi.org/10.1007/978-1-84800-318-7
Siangsanoh, A., Bahrami, M., Kaewmanee, W., Gavagsaz-ghoachani, R., Phattanasak, M., Martin, J. P., Nahid-Mobarakeh, B., Weber, M., Pierfederici, S., Maranzana, G., & Didierjean, S. (2021). Series hybrid fuel cell/supercapacitor power source. Mathematics and Computers in Simulation, 184, 21–40. https://doi.org/10.1016/j.matcom.2020.02.001
Solar, J. S. E., & Instalación, S. (2020). Flywheels: Almacenamiento de energía cinética o inercial | KeeUI Solar. 1–12. https://keeui.com/2020/12/23/flywheels-almacenamiento-de-energia-cinetica-inercial/
Sousounis, M. C., Shek, J. K. H., & Sellar, B. G. (2019). The effect of supercapacitors in a tidal current conversion system using a torque pulsation mitigation strategy. Journal of Energy Storage, 21(November 2018), 445–459. https://doi.org/10.1016/j.est.2018.11.032
Supe, H., Avtar, R., Singh, D., Gupta, A., Yunus, A. P., Dou, J., Ravankar, A. A., Mohan, G., Chapagain, S. K., Sharma, V., Singh, C. K., Tutubalina, O., & Kharrazi, A. (2022). Soaking Up Sun in the Thar Desert. Remote Sensing.
Tummuru, N. R., Mishra, M. K., & Srinivas, S. (2015). Dynamic Energy Management of Renewable Grid Integrated Hybrid Energy Storage System. IEEE Transactions on Industrial Electronics, 62(12), 7728–7737. https://doi.org/10.1109/TIE.2015.2455063
Victoria Petrescu, R., Aversa, R., Apicella, A., Ion Tiberiu Petrescu, F., Victoria, R. V, Ion, F. T., Victoria Petrescu, R. V, Raffaella, A., Antonio, A., & Ion Petrescu, F. T. (2017). Green Energy Production PERMANENT GREEN ENERGY PRODUCTION Permanent Green Energy Production PERMANENT GREEN ENERGY PRODUCTION. April. http://www.altenergymag.com/article/2017/04/permanent-green-energy-production/25973
Walker, S., & Thies, P. R. (2021). A review of component and system reliability in tidal turbine deployments. Renewable and Sustainable Energy Reviews, 151(July), 111495. https://doi.org/10.1016/j.rser.2021.111495
Wang, X., Yu, D., Le Blond, S., Zhao, Z., & Wilson, P. (2017). A novel controller of a battery-supercapacitor hybrid energy storage system for domestic applications. Energy and Buildings, 141, 167–174. https://doi.org/10.1016/j.enbuild.2017.02.041
García Sanclemente, S. G., Sánchez Jaramillo, E. A., & Orellana Márquez, L. V. (2025). Los Microaprendizajes como Estrategias Didácticas que Potencian el Desarrollo Cognitivo. Ciencia Y Reflexión, 4(2), 507–519. https://doi.org/10.70747/cr.v4i2.271
Escalante Jiménez, J. L., Rodríguez Colón, P. L., & Polanco García, C. Y. (2025). Inteligencia artificial en contextos educativos: un acercamiento desde una revisión documental sistemática. Ciencia Y Reflexión, 4(2), 325–349. https://doi.org/10.70747/cr.v4i2.241
Jiménez Gómez, R. (2025). Análisis de la Heterogeneidad Estructural de las Regiones de Costa Rica. Ciencia Y Reflexión, 4(2), 37–66. https://doi.org/10.70747/cr.v4i2.244
Zhou, Z., Benbouzid, M., Frédéric Charpentier, J., Scuiller, F., & Tang, T. (2013). A review of energy storage technologies for marine current energy systems. Renewable and Sustainable Energy Reviews, 18, 390–400. https://doi.org/10.1016/j.rser.2012.10.006
Derechos de autor 2025 Lucía Jeanette Calzada Cano , Jorge Alberto López Arcos, Francisco Manuel García Reyes, Luis Alberto García Reyes, Sergio Lerma Ledezma, Gladis Guadalupe Suárez Velázquez

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.











.png)
















.png)
1.png)

