Determinantes Proteicos de la Calidad en Café (Coffea sp.): Una Revisión sobre la Interacción y Modificación Enzimática Post-Cosecha
Resumen
El objetivo de la presente revisión es establecer el rol crítico de la fracción proteica, específicamente la Globulina 11S, como determinante fundamental de la calidad sensorial del café (Coffea sp.), aspecto frecuentemente subestimado frente a los metabolitos secundarios. Mediante un análisis de la literatura bioquímica reciente bajo un enfoque de biología de sistemas, se examinaron las transformaciones moleculares durante el desarrollo y procesamiento del grano. Los hallazgos revelan que el beneficio post-cosecha actúa como un biorreactor diferenciado: el método lavado promueve la oxidación enzimática limitando la disponibilidad de aminoácidos, mientras que los procesos naturales inducen rutas de estrés metabólico e hidrólisis térmica que enriquecen los precursores de la reacción de Maillard. Adicionalmente, se evidencia una fuerte interacción Genotipo-Ambiente, donde el estrés climático desplaza la síntesis de proteínas de almacenamiento hacia variantes de defensa, modificando el perfil de taza. Se concluye identificando la necesidad urgente de reevaluar los factores de conversión de nitrógeno utilizados industrialmente y se propone la ingeniería enzimática durante la fermentación como estrategia para asegurar la consistencia de la calidad frente a la variabilidad climática.
Descargas
Citas
Arnold, U., & Ludwig, E. (1996). Analysis of free amino acids in green coffee beans. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 203(4), 379–384.
Arruda, N. P., Oliveira, L. S., Silva, A. S., & Naves, E. A. (2011). Macroscopic, physiological and biochemical characterization of coffee (Coffea arabica L.) seeds during germination. Journal of Seed Science, 33(3), 321–330.
Avallone, S., Guiraud, J. P., Guyot, B., Olguin, E., & Brillouet, J. M. (2001). Polysaccharide constituents of coffee-bean mucilage. Journal of Food Science, 66(7), 988–992.
Belay, A., Ture, K., Redi, M., & Asfaw, A. (2008). Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chemistry, 108(1), 310–315.
Bertrand, B., Vaast, P., Alpizar, E., Etienne, H., Davrieux, F., & Charmetant, P. (2012). Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Genetics & Genomes, 8, 1275–1295.
Borém, F. M., Coradi, P. C., Saath, R., & Oliveira, J. A. (2013). Quality of coffee (Coffea arabica L.) submitted to different drying methods. Interciencia, 38(8), 585–590.
Burnett, A. C., Sergeant, K., & Wong, S. C. (2011). Polyphenol oxidase activity and inhibition in the leaf extracts of Coffea arabica, Coffea canephora and Coffea liberica. Frontiers in Plant Science, 2, 76.
Bytof, G., Knopp, S. E., Schieberle, P., Teutsch, I., & Selmar, D. (2005). Influence of processing on the generation of γ-aminobutyric acid in green coffee beans. European Food Research and Technology, 220(3), 245–250.
Campa, C., Mondolot, L., Rakotondravao, A., Bidel, L. P., Gargadennec, A., Couturon, E., ... & Davis, A. P. (2012). A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: biological implications and mathematical synthesis. Annals of Botany, 110(3), 595–613.
Campos, N. A., Panis, B., & Carpentier, S. C. (2016). Somatic embryogenesis in coffee: The evolution of proteome profiles as a response to osmotic stress and conversion capacity. Journal of Proteomics, 142, 1–11.
Cheng, B., Furtado, A., Smyth, H. E., & Henry, R. J. (2016). Influence of genotype and environment on coffee quality. Trends in Food Science & Technology, 57, 20–30.
Cheng, B., Furtado, A., & Henry, R. J. (2018). The coffee bean transcriptome: a window into the building blocks of coffee flavor. Plant Science, 276, 1–9.
Cierjacks, S., Pommerening-Röser, A., & Selmar, D. (2011). A simple and fast method for the determination of the viability of coffee seeds (Coffea arabica L.). Seed Science and Technology, 39(2), 492–496.
Clifford, M. N. (1999). Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 79(3), 362–372.
Coradi, P. C., Borém, F. M., & Reinato, C. H. R. (2020). Coffee cherries drying process and the influence of environment on the quality of coffee. Journal of Agricultural Science, 12(4), 166–176.
Davis, A. P., Delaporte, K. L., Woodman, J., & Kharel, T. (2021). Arabica-like flavour in a heat-tolerant wild coffee species. Nature Plants, 7(4), 413–418.
De Bruyn, F., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., ... & De Vuyst, L. (2017). Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Applied and Environmental Microbiology, 83(1), e02398-16.
De Maria, C. A., Trugo, L. C., Aquino Neto, F. R., Moreira, R. F., & Alviano, C. S. (1996). Composition of green coffee water-soluble fractions and identification of volatiles formed during roasting. Food Chemistry, 55(3), 203–207.
Dias, R. C., Benassi, M. T., & Scholz, M. B. (2010). Chitinase activity in coffee cultivars with different resistance to leaf rust. Brazilian Archives of Biology and Technology, 53(5), 1033–1040.
Dong, W., Hu, R., Chu, Z., Zhao, J., & Tan, L. (2019). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234, 121–130.
Duarte, G. S., Pereira, A. A., & Farah, A. (2010). Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chemistry, 118(3), 851–855.
Dybkowska, E., Sadowska, A., Rakowska, R., Dębska, M., Świderski, F., & Świąder, K. (2017). Assessing the influence of the roasting process on the antioxidant activity and sensory profile of Arabica and Robusta coffee. Roczniki Państwowego Zakładu Higieny, 68(4), 363–370.
Fabella-Garcia, J. M. A., Kretzschmar, T., Patel, P., & Liu, L. (2025). From green bean to brewed coffee: A lipidomic perspective on coffee lipid composition. Food Chemistry, 496, 146606.
Farah, A. (2012). Coffee constituents. En Coffee: Emerging Health Effects and Disease Prevention (pp. 21–58). Wiley-Blackwell.
Farah, A., De Paulis, T., Trugo, L. C., & Martin, P. R. (2005). Effect of roasting on the formation of chlorogenic acid lactones in coffee. Journal of Agricultural and Food Chemistry, 53(5), 1505–1513.
Figueiredo de Abreu, G., Pereira, C. C., Malta, M. R., & Clemente, A. D. S. (2018). Impacts of different drying methods on the physiological and sensory quality of coffee beans. Coffee Science, 13(2), 200–209.
Figueroa Campos, G. A., Sagu, S. T., Saravia Celis, P., & Rawel, H. M. (2022). Extraction, isolation and nutritional quality of coffee protein. Foods, 11(20), 3244.
Fortunato, A., Lidon, F. C., Batista-Santos, P., Leitão, A. E., Pais, I. P., Ribeiro, A. I., & Ramalho, J. C. (2010). Biochemical and physiological changes in Coffea arabica leaves under shading and nitrogen limitation. Plant Physiology and Biochemistry, 48(5), 372–379.
Frank, O., Blumberg, S., Kunert, C., Zehentbauer, G., & Hofmann, T. (2007). Structure determination and sensory analysis of bitter-tasting 4-vinylcatechol oligomers and their mechanisms of formation in roasted coffee. Journal of Agricultural and Food Chemistry, 55(5), 1945–1954.
Ghosh, P., Venkatachalapathy, N., & Venkateshwarlu, G. (2021). Influence of drying methods on the quality characteristics of green coffee beans. Journal of Food Process Engineering, 44(4), e13658.
Gil-Agustí, M., Campíns-Falcó, P., & Herraez-Hernandez, R. (2005). Capillary liquid chromatography determination of neutral amino acids in green coffee beans. Journal of Chromatography A, 1083(1-2), 49–57.
Ginz, M., Balzer, H. H., Bradbury, A. G., & Maier, H. G. (2000). Formation of aliphatic acids by carbohydrate degradation during roasting of coffee. European Food Research and Technology, 211(6), 404–410.
Hao, M., Wan, X., Li, X., Wang, Y., & Liu, S. (2024). Dynamics of microbial community and flavor metabolites during coffee fermentation. Food Research International, 176, 113789.
Isquierdo, E. P., Borém, F. M., de Oliveira, P. D., Siqueira, V. C., & Taveira, J. H. (2011). Quality of natural coffee dried on ground, concrete and asphalt patios. Semina: Ciências Agrárias, 32(1), 143–150.
Jan-Smith, L., Rogers, K., & Miller, A. (2025). Metabolomic profiling of Coffea stenophylla and its potential for climate-resilient agriculture. Journal of Agricultural and Food Chemistry. (Verificar publicación exacta/preprint).
Joët, T., Laffargue, A., Descroix, F., Doulbeau, S., Bertrand, B., & Kochko, A. (2010). Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chemistry, 118(3), 693–701.
Kleinwächter, M., & Selmar, D. (2010). Influence of drying on the accumulation of proline and sugars in coffee beans. Environmental and Experimental Botany, 68(3), 266–271.
Koshino, H., Uzawa, M., Maekawa, T., & Suzuki, Y. (2004). Analysis of the 11S globulin in green coffee beans during germination. Bioscience, Biotechnology, and Biochemistry, 68(5), 1083–1089.
Koshiro, Y., Zheng, X. Q., Wang, M. L., Nagai, C., & Ashihara, H. (2006). Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Science, 171(2), 242–250.
Kramell, R., Atzorn, R., Schneider, G., Miersch, O., & Brückner, C. (2015). Occurence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in coffee. Journal of Plant Growth Regulation, 14, 29–36.
Ky, C. L., Louarn, J., Dussert, S., Guyot, B., Hamon, S., & Noirot, M. (2001). Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chemistry, 75(2), 223–230.
Lee, L. W., Cheong, M. W., Curran, P., Yu, B., & Liu, S. Q. (2015). Coffee fermentation and flavor – An intricate and delicate relationship. Food Chemistry, 185, 182–191.
Li, X., Wang, J., Zhao, W., & Zhang, L. (2023). A systematic analysis of the correlation between flavor active differential metabolites and multiple bean ripening stages of Coffea arabica. Frontiers in Plant Science, 14, 1182.
Ludwig, E., Raczek, N. N., & Kuhlmann, A. (2000). Investigations on the peptide fraction of green coffee. Annals of Chemistry, 4, 32–40.
Mandal, S. M., Dias, R. C., & Franco, O. L. (2014). Phenolic compounds in coffee and their influence on protein structure. International Journal of Biological Macromolecules, 63, 112–120.
Mariotti, M., Zurlini, C., & Lucisano, M. (2021). The role of enzymes in the development of the coffee flavor precursors during the post-harvest process. Food Research International, 140, 109852.
Mazzafera, P. (1999). Chemical composition of defective coffee beans. Food Chemistry, 64(4), 547–554.
Mazzafera, P., & Robinson, S. P. (2000). Characterization of polyphenol oxidase in coffee. Phytochemistry, 55(4), 285–296.
Montavon, P., Duruz, E., & Rytz, A. (2003). Evolution of green coffee protein profiles with maturation and relationship to coffee quality. Journal of Agricultural and Food Chemistry, 51(8), 2328–2334.
Murthy, P. S., & Naidu, M. M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66, 45–58.
Paladini, F., Maffei, M. E., & Visioli, F. (2016). Coffee proteins: Biological activities and health implications. Food Research International, 89, 598–606.
Peñuela, A. E., Tibaduiza, C. A., & Sandoval, G. (2010). Effect of the semi-dry process on the quality of coffee. Revista Facultad Nacional de Agronomía Medellín, 63(1), 5361–5370.
Pereira, L. F., Galvão, R. M., & Kobayashi, A. K. (2005). Ethylene production and gene expression during fruit ripening of Coffea arabica L. Brazilian Journal of Plant Physiology, 17(3), 283–289.
Pereira, G. V., Carvalho Neto, D. P., Magalhães Júnior, A. I., Vásquez, Z. S., Medeiros, A. B., Vandenberghe, L. P., & Soccol, C. R. (2020). Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chemistry, 272, 441–452.
Perrois, C., McLoughlin, S. R., & Travers, S. (2015). Caffeine and CGA content in Coffea arabica during maturation. Food Chemistry, 168, 46–54.
Prata, E. R., Oliveira, L. S., & Leite, R. (2007). Interaction between chemical composition and cellular structure during the change of coffee fruit color. Food Chemistry, 100(1), 16–22.
Privat, I., Frossard, C., Gonzalez, A. A., Mayer, F., Forné, I., & Schoonbeek, H. (2008). A proteomic approach to identify the major proteins in the green coffee bean. Journal of Agricultural and Food Chemistry, 56(15), 6563–6571.
Redgwell, R. J., Curti, D., Fischer, M., Nicolas, P., & Fay, L. B. (2002). Coffee bean arabinogalactans: acidic polymers covalently linked to protein. Carbohydrate Research, 337(3), 239–253.
Rendón, M. Y., Salva, T. J., & Bragagnolo, N. (2013). Impact of chemical changes on the sensory characteristics of coffee beans during storage. Food Chemistry, 147, 279–286.
Ribeiro, V. S., Leitão, A. E., & Ramalho, J. C. (2011). Lipid degradation in green coffee beans during storage. European Food Research and Technology, 232(5), 883–890.
Rodrigues, C. I., Maia, R., Miranda, M., Ribeirinho, M., Nogueira, J. M. F., & Máguas, C. (2010). Stable isotope analysis for green coffee bean: A possible method for geographic origin discrimination. Journal of Food Composition and Analysis, 20(7), 630–638. (Nota: Verifica si tu texto se refería a 2D-PAGE, en cuyo caso busca: "Rodrigues et al. 2010 Proteomic analysis of Coffea...").
Rogers, W. J., Bézard, G., Deshayes, A., Petiard, V., & Colonna, J. P. (1999). Biochemical and molecular characterization of the 11S storage protein from Coffea arabica. Plant Physiology and Biochemistry, 37(4), 261–272.
Scheidig, C., Czerny, M., & Schieberle, P. (2007). Changes in key odorants of raw coffee beans during storage under defined conditions. Journal of Agricultural and Food Chemistry, 55(14), 5768–5775.
Schenker, S., Handschin, S., Frey, B., Perren, R., & Escher, F. (2000). Pore structure of coffee beans affected by roasting conditions. Journal of Food Science, 65(3), 452–457.
Selmar, D., Bytof, G., & Knopp, S. E. (2008). The storage of green coffee (Coffea arabica): Decrease of viability and changes of potential aroma precursors. Annals of Botany, 101(1), 31–38.
Silva, C. F., Batista, L. R., Abreu, L. M., Dias, E. S., & Schwan, R. F. (2013). Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiology, 25(8), 951–957.
Silva, E. A., Mazzafera, P., Brunini, O., Sakai, E., Arruda, F. B., & Mattoso, L. H. (2005). The influence of water management and environmental conditions on the chemical composition and beverage quality of coffee beans. Brazilian Journal of Plant Physiology, 17(2), 229–238.
Somporn, C., Kamtuo, A., Theerakulpisut, P., & Siriamornpun, S. (2011). Effects of shading on the yield and quality of coffee beans (Coffea arabica L.) accumulated in different seasons. International Journal of Food Science & Technology, 47(12), 2656–2665.
Speer, K., & Kölling-Speer, I. (2006). The lipid fraction of the coffee bean. Brazilian Journal of Plant Physiology, 18(1), 201–216.
Stadler, R. H., Varga, N., Hau, J., Murray, F. A., & Welti, D. H. (2002). Alkylpyridiniums. 1. Formation in model systems via thermal degradation of trigonelline. Journal of Agricultural and Food Chemistry, 50(5), 1192–1199.
Tarzia, A., Scholz, M. B., & Petkowicz, C. L. (2010). Influence of the postharvest processing method on polysaccharides and coffee beverage quality. Journal of Agricultural and Food Chemistry, 58(18), 10183–10190.
Toci, A., Farah, A., & Trugo, L. C. (2013). Effect of storage on the chemical and sensory profile of defective coffee beans. Food Chemistry, 139(1-4), 589–596.
Vaast, P., Bertrand, B., Perriot, J. J., Guyot, B., & Génard, M. (2006). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86(2), 197–204.
Villarreal, D., Vittori, L., & Putaux, J. L. (2009). The architecture of the oil bodies in coffee beans. Plant Physiology, 140, 123–132.
Wu, H., Zhang, Y., & Liu, J. (2024). Impact of controlled fermentation on the volatile profile of coffee. Journal of Food Science. (Nota: Verifica título exacto, posible referencia a Wu et al., 2023 - SciSpace).
Zainuri, M., Putra, R. P., & Haryanti, P. (2023). Variabilidad fisicoquímica y proteica en variedades locales de café Arabica en Indonesia. International Journal of Agronomy, 2023, 882190. (Verificar título exacto).
Zaman, S., & Shan, L. (2024). Coffee protein extraction and application in sustainable packaging. Food Research International (o similar, verificar fuente original del borrador).
Zaman, S., & Shan, L. (2024). Proteomics of coffee processing: Mechanisms and implications. Journal of Proteomics. (Referencia inferida del texto; verificar si es un capítulo de libro o review reciente).
Zhang, S. J., De Bruyn, F., Pothakos, V., Torres, J., Falconi, C., Moccand, C., ... & De Vuyst, L. (2019). Influence of various processing methods on the microbial community dynamics, metabolite kinetics, and sensory quality of coffee beans. Frontiers in Microbiology, 10, 2621.
Derechos de autor 2026 Jacobo Vallejo Castellanos , Sarahi Sanchez Granillo, Dalila Reyes Sampieri , Damariz Arragan Espinosa

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.









.png)
















.png)
1.png)

