Análisis Bibliométrico del Impacto de los laboratorios de Física en el Aprendizaje

Palabras clave: laboratorios de física, realidad aumentada, impacto en el aprendizaje, aprendizaje automático, análisis bibliométrico

Resumen

Este análisis bibliométrico evalúa 205 artículos sobre el impacto de los laboratorios de física en el aprendizaje, destacando un aumento significativo en las publicaciones desde 2013. Se examinan los cinco artículos más citados, los cuales exploran laboratorios que utilizan realidad aumentada, realidad virtual, simulaciones, entre otros. Aunque los laboratorios siguen siendo herramientas clave en la enseñanza de la física, los resultados sobre su efectividad son variados. Estados Unidos lidera la producción científica en este campo, y se concluye que, aunque las tecnologías emergentes ofrecen oportunidades prometedoras, se necesita más investigación para comprender completamente su impacto en el aprendizaje.

Descargas

La descarga de datos todavía no está disponible.

Citas

Akingbola, O. G., Abiodun, P. O., Owolabi, O. A., Efe, F., & Abedoh, H. (2024). Engaging University Students in Practical Physics Labs through Motivational Active Learning. ASEE Annual Conference and Exposition, Conference Proceedings.
Arymbekov, B., Turekhanova, K., & Turdalyuly, M. (2024). The Effect of Augmented Reality (AR) Supported Teaching Activities on Academic Success and Motivation to Learn Nuclear Physics among High School Pupils. International Journal of Information and Education Technology, 14(5), 743–760. https://doi.org/10.18178/ijiet.2024.14.5.2099
Crouch, C. H., Wisittanawat, P., Cai, M., & Renninger, K. A. (2018). Life science students’ attitudes, interest, and performance in introductory physics for life sciences: An exploratory study. Physical Review Physics Education Research, 14(1).
https://doi.org/10.1103/PhysRevPhysEducRes.14.010111
Daaif, J., Tridane, A., El Wafiq, M., Tridane, M., & Belaaouad, S. (2024). Perception of the use of an e-lab platform for university students during the COVID-19 pandemic. International Journal of Education and Practice, 12(3), 932–952. https://doi.org/10.18488/61.v12i3.3814
Juhásová, A., & Kireš, M. (2024). Developing the experimental skills of pre-service physics teachers. Journal of Physics: Conference Series, 2715(1).
https://doi.org/10.1088/1742-6596/2715/1/012021
Klein, P., Ivanjek, L., Dahlkemper, M. N., Jeličić, K., Geyer, M.-A., Küchemann, S., & Susac, A. (2022). Studying physics during the COVID-19 pandemic: Student assessments of learning achievement, perceived effectiveness of online recitations, and online laboratories. Physical Review Physics Education Research, 17(1).
https://doi.org/10.1103/PhysRevPhysEducRes.17.010117
Krupczak Jr., J., Bair, N., Benson, T., Berke, P., Corlew, D., Lantz, K., Lappenga, D., Scholtens, M., & Woessner, D. (2000). Hands-on laboratory projects for non-science majors: Learning principles of physics in the context of everyday technology. ASEE Annual Conference Proceedings, 3047–3055.
Loeffler, H. H., Wan, S., Klähn, M., Bhati, A. P., & Coveney, P. V. (2024). Optimal Molecular Design: Generative Active Learning Combining REINVENT with Precise Binding Free Energy Ranking Simulations. Journal of Chemical Theory and Computation.
https://doi.org/10.1021/acs.jctc.4c00576
Ruiz-Tipán, F., & Valenzuela, A. (2021). Literary review of economic environmental dispatch considering bibliometric analysis. Iteckne.
https://doi.org/https://doi.org/10.15332/iteckne.v19i1.2631
Sakibayeva, B., & Sakibayev, S. (2024). Formation of students’ research skills and abilities with the help of Mobile Learning in the course of general physics | Формування дослідницьких умінь і навичок студентів засобами мобільного навчання в курсі загальної фізики. Scientific Herald of Uzhhorod University. Series Physics, 55, 2567–2575.
https://doi.org/10.54919/physics/55.2024.256ma7
Semerikov, S. O., & Striuk, A. M. (2024). Embracing Emerging Technologies: Insights from the 6th Workshop for Young Scientists in Computer Science & Software Engineering. CEUR Workshop Proceedings, 3662, 1–36.
Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108. https://doi.org/10.1016/j.chb.2020.106316
Werth, A., West, C. G., & Lewandowski, H. J. (2022). Impacts on student learning, confidence, and affect and in a remote, large-enrollment, course-based undergraduate research experience in physics. Physical Review Physics Education Research, 18(1).
https://doi.org/10.1103/PhysRevPhysEducRes.18.010129
Wieman, C., & Holmes, N. G. (2015). Measuring the impact of an instructional laboratory on the learning of introductory physics. American Journal of Physics, 83(11), 972–978.
https://doi.org/10.1119/1.4931717
Wilcox, B. R., & Lewandowski, H. J. (2016). Open-ended versus guided laboratory activities: Impact on students’ beliefs about experimental physics. Physical Review Physics Education Research, 12(2). https://doi.org/10.1103/PhysRevPhysEducRes.12.020132
Yang, K.-Y., & Heh, J.-S. (2007). The impact of internet virtual physics laboratory instruction on the achievement in physics, science process skills and computer attitudes of 10th-grade students. Journal of Science Education and Technology, 16(5), 451–461.
https://doi.org/10.1007/s10956-007-9062-6
Publicado
2024-11-18
Cómo citar
Aguirre Mateus, J. P., Guerrero Zambrano, M. F., Aguirre Mateus, L. J., & Sanchez Alvarado, L. M. (2024). Análisis Bibliométrico del Impacto de los laboratorios de Física en el Aprendizaje. Ciencia Latina Revista Científica Multidisciplinar, 8(5), 8241-8256. https://doi.org/10.37811/cl_rcm.v8i5.14237
Sección
Ciencias y Tecnologías

Artículos más leídos del mismo autor/a