Análisis del ciclo de vida de los componentes clave en motores diésel de vehículos militares tipo NPR y sus implicaciones en el mantenimiento preventivo

Palabras clave: motores diésel, vehículos militares npr, mantenimiento preventivo, disponibilidad operativa

Resumen

Este estudio examina el ciclo de vida de los componentes clave en los motores diésel de vehículos militares tipo NPR, empleados por el Ejército Nacional de Colombia. Estos motores son fundamentales para garantizar la movilidad operativa en escenarios exigentes, pero la falta de un análisis detallado del ciclo de vida de sus componentes impacta negativamente en la eficiencia del mantenimiento preventivo, provocando fallas inesperadas y reduciendo la disponibilidad operativa. El análisis se centra en los principales componentes de los motores diésel, como pistones, inyectores, turbocompresores y sistemas de lubricación. Se emplearon métodos cuantitativos para evaluar el desempeño de estos componentes a lo largo de su vida útil, considerando factores como el desgaste, las condiciones de operación y la calidad del combustible. Los resultados revelan que los ciclos de vida reales difieren de los esperados en contextos militares, influenciados por las condiciones de uso intensivo y el entorno operativo. Las conclusiones del estudio destacan la importancia de ajustar los intervalos de mantenimiento preventivo basándose en el análisis del ciclo de vida, lo que permitiría mejorar la eficiencia del mantenimiento, minimizar las fallas imprevistas y aumentar la disponibilidad operativa de los vehículos militares NPR. Se recomienda la aplicación de esta metodología a otros vehículos diésel en el futuro para mejorar la fiabilidad de las flotas militares y optimizar el rendimiento en misiones críticas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Benakrach, H., Bounouib, M., Taha-Janan, M., & Essadek, M. Z. (2022). A three-dimensional multi-species flow solver for the Euler equations combined with a stiffened gas equation of state. International Journal of Mechanics, 16, 55–64. https://doi.org/10.46300/9104.2022.16.7
Chen, C., & Zhao, J. (2018). Switching Control of Acceleration and Safety Protection for Turbo Fan Aero-Engines Based on Equilibrium Manifold Expansion Model. Asian Journal of Control, 20(5), 1689–1700. https://doi.org/10.1002/asjc.1745
Ciulli, E. (2019). Experimental rigs for testing components of advanced industrial applications. Friction, 7(1), 59–73. https://doi.org/10.1007/s40544-017-0197-z
Delgado, J., Arrabal, L., & Aguirre, M. Á. (2005). Desarrollo de un combustible diésel adaptado a los nuevos motores: Estudio del efecto de los desactivadores de metales en la estabilidad del combustible. Ingenieria Quimica, 37(424), 113–124. https://www.scopus.com/inward/record.uri?eid=2-s2.0-21644446216&partnerID=40&md5=e79f85261027c49ed6a405d2903324fa
Díaz-Reza, J. R., García-Alcaraz, J. L., Sánchez-Ramírez, C., & Vargas, A. R. (2024). Assessing the impact of Lean manufacturing on the Social Sustainability through Structural Equation Modeling and System Dynamics. Jordan Journal of Mechanical and Industrial Engineering, 18(1), 113–130. https://doi.org/10.59038/jjmie/180109
Han, Y., Soltis, J., & Palacios, J. (2018). Engine inlet guide vane ice impact fragmentation. AIAA Journal, 56(9), 3680–3690. https://doi.org/10.2514/1.J056648
Hermans, M., & Tamás, P. (2024). OVERALL EQUIPMENT EFFICIENCY, TOTAL PRODUCTIVE MAINTENANCE AND DIGITAL TWIN TECHNOLOGIES - A LITERATURE REVIEW. Academic Journal of Manufacturing Engineering, 22(2), 129–137. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201374412&partnerID=40&md5=741159cae05e11b80f08bf377e803387
Hutterer, M., Wimmer, D., & Schrodl, M. (2020). Stabilization of a Magnetically Levitated Rotor in the Case of a Defective Radial Actuator. IEEE/ASME Transactions on Mechatronics, 25(6), 2599–2609. https://doi.org/10.1109/TMECH.2020.2985623
Johnson, J., Pramod, V. K., & Pramod, V. R. (2024). Analytical hierarchy process-based maintenance quality function deployment integrating total quality management with total productive maintenance and its application in dairy industry. International Journal of Industrial and Systems Engineering, 46(3), 404–432. https://doi.org/10.1504/IJISE.2024.137957
Ke, Z., Liu, C., Guo, M., Wei, W., & Yan, Q. (2024). Cascade System Design of Torque Converter Based on Variable Sectional-Area. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 44(5), 512–520. https://doi.org/10.15918/j.tbit1001-0645.2023.148
Khan, S., Zeeshan, M., & Ayaz, Y. (2020). Implementation and analysis of MultiCode MultiCarrier Code Division Multiple Access (MC–MC CDMA) in IEEE 802.11ah for UAV Swarm communication. Physical Communication, 42. https://doi.org/10.1016/j.phycom.2020.101159
Krupicz, B., Barsukov, V. G., & Ilkevich, M. A. (2022). Simulation of Micro Contact Interactions in Sliding of Solid Particles along the Radial Blades of Turbo Machines. Journal of Friction and Wear, 43(2), 95–101. https://doi.org/10.3103/S1068366622020064
Kumar, P. (2023). Dynamic analysis and identification in a cracked and unbalanced rigid rotor with two offset discs and one middle disc mounted on foil bearings. International Journal of Dynamics and Control, 12(8), 2648–2673. https://doi.org/10.1007/s40435-024-01411-w
Li, Y., Li, W., & Su, Y. (2019). Study on fluid field and temperature field of large turbo-generator rotor by the method of weak and strong rotational coupling. Beijing Jiaotong Daxue Xuebao/Journal of Beijing Jiaotong University, 43(6), 104–110. https://doi.org/10.11860/j.issn.1673-0291.20190062
Luo, L., Sha, Y., & Hao, Y. (2020). Method of failure mode analysis and test verification for fiber reinforced composites turbo-shaft structure. Hangkong Dongli Xuebao/Journal of Aerospace Power, 35(7), 1425–1436. https://doi.org/10.13224/j.cnki.jasp.2020.07.010
Maja, M., Janse Van Rensburg, L., & Gerstenberg, C. (2020). Compartmentalisation: an example of a national official assurance system. Revue Scientifique et Technique (International Office of Epizootics), 39(1), 213–221. https://doi.org/10.20506/rst.39.1.3074
Mendes, A. S., Meirelles, P. S., & Zampieri, D. E. (2008). Analysis of torsional vibration in internal combustion engines: Modelling and experimental validation. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 222(2), 155–178. https://doi.org/10.1243/14644193JMBD126
Myers, R., DeHart, M., & Kotlyar, D. (2024). Integrated Steady-State System Package for Nuclear Thermal Propulsion Analysis Using Multi-Dimensional Thermal Hydraulics and Dimensionless Turbopump Treatment. Energies, 17(13). https://doi.org/10.3390/en17133068
Nazari, S., Siegel, J., & Stefanopoulou, A. (2019). Optimal Energy Management for a Mild Hybrid Vehicle with Electric and Hybrid Engine Boosting Systems. IEEE Transactions on Vehicular Technology, 68(4), 3386–3399. https://doi.org/10.1109/TVT.2019.2898868
Osenga, M. (2004). Perkins opens Brazilian engine plant. Diesel Progress North American Edition, 70(1), 20–22. https://www.scopus.com/inward/record.uri?eid=2-s2.0-2442623218&partnerID=40&md5=ba4f2835c3f63ae59eb3a266372e134b
Owsiak, A. P., Greig, J. M., & Diehl, P. F. (2021). Making trains from boxcars: studying conflict and conflict management interdependencies. International Interactions, 47(1), 1–22. https://doi.org/10.1080/03050629.2021.1848827
Rathi, S. S., Sahu, M. K., & Kumar, S. (2023). Implementation of Total Productive Maintenance to Improve Productivity of Rolling Mill. Indian Journal of Engineering and Materials Sciences, 30(6), 882–890. https://doi.org/10.56042/ijems.v30i6.3158
Sgarbi, S. R., & Riese, R. (2000). Introduction of a new line of electronic diesel engines at Maxion international Motores SA. SAE Technical Papers. https://doi.org/10.4271/2000-01-3253
Sha, Y., Huang, J., Luo, L., & Bai, X. (2024). Damage evolution and failure mechanism of composite turbine shaft structure. Hangkong Dongli Xuebao/Journal of Aerospace Power, 39(5). https://doi.org/10.13224/j.cnki.jasp.20210572
Singh, S. P., Mehta, A., & Vasudev, H. (2024). Application of Sensitivity Analysis for Multiple Attribute Decision Making in Lean Production System. EMJ - Engineering Management Journal. https://doi.org/10.1080/10429247.2024.2383855
Vinod, J., & Sarkar, B. K. (2021). Francis turbine electrohydraulic inlet guide vane control by artificial neural network 2 degree-of-freedom PID controller with actuator fault. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 235(8), 1494–1509. https://doi.org/10.1177/0959651820973797
Vizcaíno, A., Soto, J. P., García, F., Ruiz, F., & Piattini, M. (2006). Aplicando gestion del conocimiento en el proceso de mantenimiento del software. Inteligencia Artificial, 10(31), 91–98. https://doi.org/10.4114/ia.v10i31.941
Wang, L., Wang, A., Yin, Y., Heng, X., Jin, M., & Zhang, H. (2023). Vibration characteristics of complex aero-engine rotors considering support constraints. Hangkong Dongli Xuebao/Journal of Aerospace Power, 38(4), 901–912. https://doi.org/10.13224/j.cnki.jasp.20210463
Wang, L., Wang, A., Yin, Y., Jin, M., & Heng, X. (2022). Dynamics Modeling Method of Complex Rotors for Aero-turboshaft Engines. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 33(13), 1513–1520. https://doi.org/10.3969/j.issn.1004-132X.2022.13.001
Yin, X., Ji, S., Wu, C., Ma, M., & Zhang, S. (2021). Three degree of freedom visualization experimental device of GMA oil film bearing. Hangkong Dongli Xuebao/Journal of Aerospace Power, 36(8), 1749–1755. https://doi.org/10.13224/j.cnki.jasp.20200380
Publicado
2024-11-14
Cómo citar
Gelvez Rojas, J. G., Guzmán Laverde , J. V., Cardozo Miranda, B. I., Ospina Molina, J., & Velosa Esparza, R. (2024). Análisis del ciclo de vida de los componentes clave en motores diésel de vehículos militares tipo NPR y sus implicaciones en el mantenimiento preventivo. Ciencia Latina Revista Científica Multidisciplinar, 8(5), 7915-7936. https://doi.org/10.37811/cl_rcm.v8i5.14203
Sección
Ciencias y Tecnologías

Artículos más leídos del mismo autor/a