Análisis de la importancia de implementar un sistema de post apagado de motor diésel en vehículos militares para acondicionar y aumentar la vida útil del turbo
Resumen
El presente trabajo analiza la importancia de implementar un sistema de post apagado en motores diésel de vehículos militares, con el objetivo de prolongar la vida útil del turboalimentador y optimizar el rendimiento general del motor. Los vehículos militares están sometidos a condiciones operativas extremas, que incluyen largas jornadas de trabajo, terrenos irregulares y climas adversos. Estas condiciones provocan un desgaste prematuro en los componentes críticos del motor, como el turbo, que alcanza temperaturas extremadamente altas durante su funcionamiento. El apagado repentino del motor interrumpe el flujo de aceite necesario para enfriar y lubricar el turbo, lo que aumenta el riesgo de sobrecalentamiento y fallos mecánicos. El sistema de post apagado permite que, una vez apagado el motor, el turbo continúe siendo enfriado de forma gradual mediante la circulación de aire y aceite. Esta medida previene el desgaste acelerado, reduce los costos de mantenimiento y mejora la disponibilidad operativa de la flota militar. En este análisis se exploran los beneficios técnicos y económicos del sistema, evaluando estudios previos en vehículos comerciales y adaptando el contexto a los vehículos militares. Además, se evalúa su aplicabilidad en el ejército colombiano, destacando su impacto en la sostenibilidad operativa, el ahorro en repuestos y la reducción del tiempo de inactividad por mantenimiento correctivo. Este estudio propone que la implementación del sistema de post apagado es una solución viable para prolongar la vida útil de los componentes del motor, mejorando así la eficiencia y rendimiento de los vehículos militares.
Descargas
Citas
Chen, C., & Zhao, J. (2018). Switching Control of Acceleration and Safety Protection for Turbo Fan Aero-Engines Based on Equilibrium Manifold Expansion Model. Asian Journal of Control, 20(5), 1689–1700. https://doi.org/10.1002/asjc.1745
Ciulli, E. (2019). Experimental rigs for testing components of advanced industrial applications. Friction, 7(1), 59–73. https://doi.org/10.1007/s40544-017-0197-z
Eversman, W., Drouin, M., Locke, J., & McCartney, J. (2021). Impedance models for single and two degree of freedom linings and correlation with grazing flow duct testing. International Journal of Aeroacoustics, 20(5–7), 497–529. https://doi.org/10.1177/1475472X211023843
Gong, L., Xiong, Q., Luo, M., & Fu, Q. (2021). Speed prediction for power turbine rotors of turboshaft engine on loss-of-load. Hangkong Dongli Xuebao/Journal of Aerospace Power, 36(2), 352–357. https://doi.org/10.13224/j.cnki.jasp.2021.02.013
Gottschalk, H., & Saadi, M. (2019). Shape gradients for the failure probability of a mechanic component under cyclic loading: a discrete adjoint approach. Computational Mechanics, 64(4), 895–915. https://doi.org/10.1007/s00466-019-01686-3
Han, Y., Soltis, J., & Palacios, J. (2018). Engine inlet guide vane ice impact fragmentation. AIAA Journal, 56(9), 3680–3690. https://doi.org/10.2514/1.J056648
Hoyas, S., Pastor, J. M., Khuong-Anh, D., Mompó-Laborda, J. M., & Ravet, F. (2011). Evaluation of the Eulerian-Lagrangian spray atomisation (ELSA) in spray simulations. International Journal of Vehicle Systems Modelling and Testing, 6(3–4), 187–201. https://doi.org/10.1504/IJVSMT.2011.044224
Hutterer, M., & Schroedl, M. (2022). Stabilization of Active Magnetic Bearing Systems in the Case of Defective Sensors. IEEE/ASME Transactions on Mechatronics, 27(5), 3672–3682. https://doi.org/10.1109/TMECH.2021.3131224
Hutterer, M., Wimmer, D., & Schrodl, M. (2020). Stabilization of a Magnetically Levitated Rotor in the Case of a Defective Radial Actuator. IEEE/ASME Transactions on Mechatronics, 25(6), 2599–2609. https://doi.org/10.1109/TMECH.2020.2985623
Johnson, J., Pramod, V. K., & Pramod, V. R. (2024). Analytical hierarchy process-based maintenance quality function deployment integrating total quality management with total productive maintenance and its application in dairy industry. International Journal of Industrial and Systems Engineering, 46(3), 404–432. https://doi.org/10.1504/IJISE.2024.137957
Ke, Z., Liu, C., Guo, M., Wei, W., & Yan, Q. (2024). Cascade System Design of Torque Converter Based on Variable Sectional-Area. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 44(5), 512–520. https://doi.org/10.15918/j.tbit1001-0645.2023.148
Khan, S., Zeeshan, M., & Ayaz, Y. (2020). Implementation and analysis of MultiCode MultiCarrier Code Division Multiple Access (MC–MC CDMA) in IEEE 802.11ah for UAV Swarm communication. Physical Communication, 42. https://doi.org/10.1016/j.phycom.2020.101159
Krupicz, B., Barsukov, V. G., & Ilkevich, M. A. (2022). Simulation of Micro Contact Interactions in Sliding of Solid Particles along the Radial Blades of Turbo Machines. Journal of Friction and Wear, 43(2), 95–101. https://doi.org/10.3103/S1068366622020064
Kumar, P. (2023). Dynamic analysis and identification in a cracked and unbalanced rigid rotor with two offset discs and one middle disc mounted on foil bearings. International Journal of Dynamics and Control, 12(8), 2648–2673. https://doi.org/10.1007/s40435-024-01411-w
Li, Y., Li, W., & Su, Y. (2019). Study on fluid field and temperature field of large turbo-generator rotor by the method of weak and strong rotational coupling. Beijing Jiaotong Daxue Xuebao/Journal of Beijing Jiaotong University, 43(6), 104–110. https://doi.org/10.11860/j.issn.1673-0291.20190062
Luo, L., Sha, Y., & Hao, Y. (2020). Method of failure mode analysis and test verification for fiber reinforced composites turbo-shaft structure. Hangkong Dongli Xuebao/Journal of Aerospace Power, 35(7), 1425–1436. https://doi.org/10.13224/j.cnki.jasp.2020.07.010
Meinzer, C. E., & Seume, J. R. (2020). Experimental and numerical quantification of the aerodynamic damping of a turbine blisk. Journal of Turbomachinery, 142(12). https://doi.org/10.1115/1.4048192
Mishra, A. (2024). Evaluation of TPM adoption factors in manufacturing organizations using fuzzy PIPRECIA method. Journal of Quality in Maintenance Engineering, 30(1), 101–119. https://doi.org/10.1108/JQME-11-2020-0115
Myers, R., DeHart, M., & Kotlyar, D. (2024). Integrated Steady-State System Package for Nuclear Thermal Propulsion Analysis Using Multi-Dimensional Thermal Hydraulics and Dimensionless Turbopump Treatment. Energies, 17(13). https://doi.org/10.3390/en17133068
Nazari, S., Siegel, J., & Stefanopoulou, A. (2019). Optimal Energy Management for a Mild Hybrid Vehicle with Electric and Hybrid Engine Boosting Systems. IEEE Transactions on Vehicular Technology, 68(4), 3386–3399. https://doi.org/10.1109/TVT.2019.2898868
Pauw, J. D., Veggi, L., Haidn, O. J., Wagner, C., Thümmel, T., Rixen, D. J., Ager, C., Wirtz, A., Popp, A., Wall, W. A., & Wagner, B. (2019). An academic approach to the multidisciplinary development of liquid-oxygen turbopumps for space applications. CEAS Space Journal, 11(2), 193–203. https://doi.org/10.1007/s12567-018-0228-2
Rathi, S. S., Sahu, M. K., & Kumar, S. (2023). Implementation of Total Productive Maintenance to Improve Productivity of Rolling Mill. Indian Journal of Engineering and Materials Sciences, 30(6), 882–890. https://doi.org/10.56042/ijems.v30i6.3158
Sha, Y., Huang, J., Luo, L., & Bai, X. (2024). Damage evolution and failure mechanism of composite turbine shaft structure. Hangkong Dongli Xuebao/Journal of Aerospace Power, 39(5). https://doi.org/10.13224/j.cnki.jasp.20210572
Song, K., Upadhyay, D., & Xie, H. (2019). An assessment of performance trade-offs in diesel engines equipped with regenerative electrically assisted turbochargers. International Journal of Engine Research, 20(5), 510–526. https://doi.org/10.1177/1468087418762170
Vizcaíno, A., Soto, J. P., García, F., Ruiz, F., & Piattini, M. (2006). Aplicando gestion del conocimiento en el proceso de mantenimiento del software. Inteligencia Artificial, 10(31), 91–98. https://doi.org/10.4114/ia.v10i31.941
Wang, H., Dong, H., Cai, Z., Liu, Y., & Wang, W. (2024). Peridynamics-based analysis on fracture behaviors of a turbine blade shroud. Engineering Fracture Mechanics, 295. https://doi.org/10.1016/j.engfracmech.2023.109817
Wang, L., Wang, A., Yin, Y., Heng, X., Jin, M., & Zhang, H. (2023). Vibration characteristics of complex aero-engine rotors considering support constraints. Hangkong Dongli Xuebao/Journal of Aerospace Power, 38(4), 901–912. https://doi.org/10.13224/j.cnki.jasp.20210463
Wang, Y., Zheng, Q., Zhang, H., & Xu, Z. (2021). Research on Integrated Control Method of Tiltrotor with Variable Rotor Speed Based on Two-Speed Gearbox. International Journal of Turbo and Jet Engines, 38(2), 173–183. https://doi.org/10.1515/tjj-2018-0004
Yin, X., Ji, S., Wu, C., Ma, M., & Zhang, S. (2021). Three degree of freedom visualization experimental device of GMA oil film bearing. Hangkong Dongli Xuebao/Journal of Aerospace Power, 36(8), 1749–1755. https://doi.org/10.13224/j.cnki.jasp.20200380
Zhang, J., Ma, P., Gan, S., Hu, X., & Wang, S. (2019). A novel approach for identifying gas cavitation in oil jet pumps for lubrication systems. Journal of Mechanical Engineering, 65(2), 113–122. https://doi.org/10.5545/sv-jme.2018.5656
Derechos de autor 2024 Ricardo Fabian Muñoz Gutierrez, Jorge Orlando Monroy Sanchez, Jhonatan Ospina Molina, Brayan Ignacio Cardozo Miranda, Rosmery Velosa Esparza
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.